{"title":"Solubility of water in bridgmanite","authors":"Wenhua Lu, Yuan Li","doi":"10.1007/s11631-023-00642-6","DOIUrl":null,"url":null,"abstract":"<div><p>Water in Earth’s mantle plays a critical role in both geodynamic and surficial habitability. Water in the upper mantle and transition zone is widely discussed, but less is known about the water in the lower mantle despite it constituting over half of Earth’s mass. Understanding the water storage in Earth’s lower mantle relies on comprehending the water solubility of bridgmanite, which is the most abundant mineral both in the lower mantle and throughout Earth. Nevertheless, due to limited access to the lower mantle, our understanding of water in bridgmanite mainly comes from laboratory experiments and theoretical calculations, and a huge controversy still exists. In this paper, we provide a review of the commonly employed research methods and current findings concerning the solubility of water in bridgmanite. Potential factors, such as pressure, temperature, compositions, etc., that influence the water solubility of bridgmanite will be discussed, along with insights into future research directions.</p></div>","PeriodicalId":7151,"journal":{"name":"Acta Geochimica","volume":"42 6","pages":"998 - 1006"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11631-023-00642-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geochimica","FirstCategoryId":"1089","ListUrlMain":"https://link.springer.com/article/10.1007/s11631-023-00642-6","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Water in Earth’s mantle plays a critical role in both geodynamic and surficial habitability. Water in the upper mantle and transition zone is widely discussed, but less is known about the water in the lower mantle despite it constituting over half of Earth’s mass. Understanding the water storage in Earth’s lower mantle relies on comprehending the water solubility of bridgmanite, which is the most abundant mineral both in the lower mantle and throughout Earth. Nevertheless, due to limited access to the lower mantle, our understanding of water in bridgmanite mainly comes from laboratory experiments and theoretical calculations, and a huge controversy still exists. In this paper, we provide a review of the commonly employed research methods and current findings concerning the solubility of water in bridgmanite. Potential factors, such as pressure, temperature, compositions, etc., that influence the water solubility of bridgmanite will be discussed, along with insights into future research directions.
期刊介绍:
Acta Geochimica serves as the international forum for essential research on geochemistry, the science that uses the tools and principles of chemistry to explain the mechanisms behind major geological systems such as the Earth‘s crust, its oceans and the entire Solar System, as well as a number of processes including mantle convection, the formation of planets and the origins of granite and basalt. The journal focuses on, but is not limited to the following aspects:
• Cosmochemistry
• Mantle Geochemistry
• Ore-deposit Geochemistry
• Organic Geochemistry
• Environmental Geochemistry
• Computational Geochemistry
• Isotope Geochemistry
• NanoGeochemistry
All research articles published in this journal have undergone rigorous peer review. In addition to original research articles, Acta Geochimica publishes reviews and short communications, aiming to rapidly disseminate the research results of timely interest, and comprehensive reviews of emerging topics in all the areas of geochemistry.