Deepak K. Pattanaik, Amir Prasad Sahu, Vasudevan Lakshminarayanan, Nachieketa K. Sharma
{"title":"The \\(a\\)-Wave of the Electroretinogram and Iron-Induced Oxidative Stress: A Model","authors":"Deepak K. Pattanaik, Amir Prasad Sahu, Vasudevan Lakshminarayanan, Nachieketa K. Sharma","doi":"10.1007/s10441-021-09426-y","DOIUrl":null,"url":null,"abstract":"<div><p>In photoreceptors of a dark adapted eye, the inward flux of sodium and calcium ions in the outer segment is balanced by the outward flux of potassium ions. But in the presence of light the creation of cyclic guanosine monophosphate in the outer segment decreases. Due to low concentration of <i>cG</i> (cyclic <i>GMP</i>) the channels in the outer segment open relatively less and thus the influx of calcium ion decreases, leading finally to hyperpolarization of the photoreceptors. We have analyzed theoretically the effect of oxidizing iron ions on the photoreceptors. In order to explain the effects of iron-induced oxidative stress, the different molecules and ions involved in phototransduction are quantified leading to a differential equation for calculating the electroretinogram <i>a</i>-wave voltage. The theoretical results are compared with published experimental data. In the presence of light, the iron ions could push outward the similarly charged calcium ions resulting in a small increase in the amount of inward calcium flux. Again, the presence of iron ions generates Reactive Oxygen Species, and ROS could attract the calcium ions which also increases the calcium flux. This will result in a reduction in the amplitude and slope of the <i>a</i>-wave voltage in the electroretinogram. These results are parametrized in terms of calcium ion concentrations. As the amplitude of the <i>a-</i>wave shows how much electrical signal is produced, its reduction indicates reduction in the visual signal. Thus, the increase in iron ions could explain the reduction in the electrical signal due to iron-induced oxidative stress.</p></div>","PeriodicalId":7057,"journal":{"name":"Acta Biotheoretica","volume":"70 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biotheoretica","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10441-021-09426-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In photoreceptors of a dark adapted eye, the inward flux of sodium and calcium ions in the outer segment is balanced by the outward flux of potassium ions. But in the presence of light the creation of cyclic guanosine monophosphate in the outer segment decreases. Due to low concentration of cG (cyclic GMP) the channels in the outer segment open relatively less and thus the influx of calcium ion decreases, leading finally to hyperpolarization of the photoreceptors. We have analyzed theoretically the effect of oxidizing iron ions on the photoreceptors. In order to explain the effects of iron-induced oxidative stress, the different molecules and ions involved in phototransduction are quantified leading to a differential equation for calculating the electroretinogram a-wave voltage. The theoretical results are compared with published experimental data. In the presence of light, the iron ions could push outward the similarly charged calcium ions resulting in a small increase in the amount of inward calcium flux. Again, the presence of iron ions generates Reactive Oxygen Species, and ROS could attract the calcium ions which also increases the calcium flux. This will result in a reduction in the amplitude and slope of the a-wave voltage in the electroretinogram. These results are parametrized in terms of calcium ion concentrations. As the amplitude of the a-wave shows how much electrical signal is produced, its reduction indicates reduction in the visual signal. Thus, the increase in iron ions could explain the reduction in the electrical signal due to iron-induced oxidative stress.
期刊介绍:
Acta Biotheoretica is devoted to the promotion of theoretical biology, encompassing mathematical biology and the philosophy of biology, paying special attention to the methodology of formation of biological theory.
Papers on all kind of biological theories are welcome. Interesting subjects include philosophy of biology, biomathematics, computational biology, genetics, ecology and morphology. The process of theory formation can be presented in verbal or mathematical form. Moreover, purely methodological papers can be devoted to the historical origins of the philosophy underlying biological theories and concepts.
Papers should contain clear statements of biological assumptions, and where applicable, a justification of their translation into mathematical form and a detailed discussion of the mathematical treatment. The connection to empirical data should be clarified.
Acta Biotheoretica also welcomes critical book reviews, short comments on previous papers and short notes directing attention to interesting new theoretical ideas.