Xinzhi Li, Marko Vehkamäki, Mykhailo Chundak, Kenichiro Mizohata, Anton Vihervaara, Matti Putkonen, Markku Leskelä, Mikko Ritala
{"title":"Molecular layer deposition of hybrid silphenylene-based dielectric film","authors":"Xinzhi Li, Marko Vehkamäki, Mykhailo Chundak, Kenichiro Mizohata, Anton Vihervaara, Matti Putkonen, Markku Leskelä, Mikko Ritala","doi":"10.1007/s42114-023-00756-8","DOIUrl":null,"url":null,"abstract":"<div><p>Molecular layer deposition (MLD) offers molecular level control in deposition of organic and hybrid thin films. This article describes a new type of inorganic–organic silicon-based MLD process where Aluminium chloride (AlCl<sub>3</sub>) and 1,4-bis(triethoxysilyl)benzene (BTEB) were used as precursors. Hybrid films were deposited at a temperature range of 300 to 500 °C and high growth per cycle (GPC) up to 1.94 Å was obtained. Field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) were used to analyze the appearance of the film surface. The hybrid film was amorphous in low-magnification FESEM images but some particulates appeared in high-magnification FESEM images (200 k). Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Time-of-flight elastic recoil detection analysis (ToF-ERDA), and X-ray photoelectron spectroscopy (XPS) were employed to analyze the structure and composition of the hybrid film. The ratio of Al/Si in the hybrid film was 0.8. The storage environment of the films affected their capacitance, dielectric constant, leakage performance, and breakdown voltage. A film stored in a high vacuum (10<sup>–6</sup> mbar) environment had low leakage current density (< 10<sup>–6</sup> A × cm<sup>−2</sup> at an applied voltage of 28 V) and a dielectric constant of 4.94, which was much smaller than after storing in a humid ambient environment.</p><h3>Graphical abstract</h3>\n <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\n </div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"6 5","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42114-023-00756-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-023-00756-8","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular layer deposition (MLD) offers molecular level control in deposition of organic and hybrid thin films. This article describes a new type of inorganic–organic silicon-based MLD process where Aluminium chloride (AlCl3) and 1,4-bis(triethoxysilyl)benzene (BTEB) were used as precursors. Hybrid films were deposited at a temperature range of 300 to 500 °C and high growth per cycle (GPC) up to 1.94 Å was obtained. Field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) were used to analyze the appearance of the film surface. The hybrid film was amorphous in low-magnification FESEM images but some particulates appeared in high-magnification FESEM images (200 k). Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Time-of-flight elastic recoil detection analysis (ToF-ERDA), and X-ray photoelectron spectroscopy (XPS) were employed to analyze the structure and composition of the hybrid film. The ratio of Al/Si in the hybrid film was 0.8. The storage environment of the films affected their capacitance, dielectric constant, leakage performance, and breakdown voltage. A film stored in a high vacuum (10–6 mbar) environment had low leakage current density (< 10–6 A × cm−2 at an applied voltage of 28 V) and a dielectric constant of 4.94, which was much smaller than after storing in a humid ambient environment.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.