Herbivore-induced plant volatiles do not affect settling decisions by synanthropic spiders

IF 1.6 3区 环境科学与生态学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Chemoecology Pub Date : 2021-02-26 DOI:10.1007/s00049-021-00340-w
Andreas Fischer, Signe MacLennan, Regine Gries, Gerhard Gries
{"title":"Herbivore-induced plant volatiles do not affect settling decisions by synanthropic spiders","authors":"Andreas Fischer,&nbsp;Signe MacLennan,&nbsp;Regine Gries,&nbsp;Gerhard Gries","doi":"10.1007/s00049-021-00340-w","DOIUrl":null,"url":null,"abstract":"<p>An underlying assumption of optimal foraging models is that animals are behaviorally, morphologically, and physiologically adapted to maximize their net energy intake. Here we explored whether this concept applies to web-building spiders in a multi-trophic context. If a spider were to build her web next to herbivore-fed-on plants that signal the herbivores’ enemies for help by emitting herbivore-induced plant volatiles (HIPVs), that spider may maximize web captures in the short term. However, she would also risk predation by <i>generalist</i> predators that “listen” to signaling plants to find both herbivore and spider prey, likely resulting in lower overall reproductive fitness for the spider. We tested the hypothesis that HIPVs trigger avoidance responses by web-building spiders. We selected seven common HIPVs and one HIPV elicitor, and in two-choice olfactometer bioassays tested their effect on four synanthropic spider species (false black widow, <i>Steatoda grossa</i>; common cellar spider, <i>Pholcus phalangioides</i>; hobo spider, <i>Eratigena agrestis</i>; western black widow, <i>Latrodectus hesperus</i>). The 8-component HIPV/HIPV elicitor blend had a weak deterrent effect on <i>S. grossa,</i> but the effect did not extend to <i>P. phalangioides</i>, <i>E. agrestis</i>, and <i>L. hesperus.</i> Our findings imply that there was insufficient selection pressure for these spiders to recognize HIPVs in a multi-trophic context, where spiders themselves could become prey if generalist predators or spider-hunting parasitoid wasps were to respond to signaling plants.</p>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"31 3","pages":"201 - 208"},"PeriodicalIF":1.6000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00049-021-00340-w","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemoecology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00049-021-00340-w","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

An underlying assumption of optimal foraging models is that animals are behaviorally, morphologically, and physiologically adapted to maximize their net energy intake. Here we explored whether this concept applies to web-building spiders in a multi-trophic context. If a spider were to build her web next to herbivore-fed-on plants that signal the herbivores’ enemies for help by emitting herbivore-induced plant volatiles (HIPVs), that spider may maximize web captures in the short term. However, she would also risk predation by generalist predators that “listen” to signaling plants to find both herbivore and spider prey, likely resulting in lower overall reproductive fitness for the spider. We tested the hypothesis that HIPVs trigger avoidance responses by web-building spiders. We selected seven common HIPVs and one HIPV elicitor, and in two-choice olfactometer bioassays tested their effect on four synanthropic spider species (false black widow, Steatoda grossa; common cellar spider, Pholcus phalangioides; hobo spider, Eratigena agrestis; western black widow, Latrodectus hesperus). The 8-component HIPV/HIPV elicitor blend had a weak deterrent effect on S. grossa, but the effect did not extend to P. phalangioides, E. agrestis, and L. hesperus. Our findings imply that there was insufficient selection pressure for these spiders to recognize HIPVs in a multi-trophic context, where spiders themselves could become prey if generalist predators or spider-hunting parasitoid wasps were to respond to signaling plants.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
草食诱导的植物挥发物不影响合栖蜘蛛的定居决定
最优觅食模型的一个基本假设是,动物在行为上、形态上和生理上都适应于最大化它们的净能量摄入。在这里,我们探讨了这个概念是否适用于多营养环境下的造网蜘蛛。如果一只蜘蛛在以食草动物为食的植物旁边织网,这些植物通过释放食草动物诱导的植物挥发物(HIPVs)向食草动物的敌人发出求助信号,那么蜘蛛可能会在短期内最大限度地捕获蛛网。然而,她也冒着被多面手捕食者捕食的风险,这些捕食者“倾听”植物发出的信号,寻找食草动物和蜘蛛的猎物,这可能会导致蜘蛛的整体繁殖适应性降低。我们测试了hipv引发造网蜘蛛回避反应的假设。我们选择了7种常见的HIPV激发子和1种HIPV激发子,并采用双选择嗅觉生物测定法测试了它们对4种共栖蜘蛛(假黑寡妇、粗脂蜘蛛;普通酒窖蜘蛛;流浪蜘蛛;西部黑寡妇,黑寡妇)。8组分HIPV/HIPV激发子复合物对毛茛的抑制作用较弱,但对蝴蝶兰、白芷和金丝桃的抑制作用不明显。我们的研究结果表明,在多营养环境下,这些蜘蛛没有足够的选择压力来识别hipv,如果多面手捕食者或蜘蛛捕食寄生蜂对信号植物做出反应,蜘蛛本身可能成为猎物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemoecology
Chemoecology 环境科学-生化与分子生物学
CiteScore
4.20
自引率
0.00%
发文量
11
审稿时长
>36 weeks
期刊介绍: It is the aim of Chemoecology to promote and stimulate basic science in the field of chemical ecology by publishing research papers that integrate evolution and/or ecology and chemistry in an attempt to increase our understanding of the biological significance of natural products. Its scopes cover the evolutionary biology, mechanisms and chemistry of biotic interactions and the evolution and synthesis of the underlying natural products. Manuscripts on the evolution and ecology of trophic relationships, intra- and interspecific communication, competition, and other kinds of chemical communication in all types of organismic interactions will be considered suitable for publication. Ecological studies of trophic interactions will be considered also if they are based on the information of the transmission of natural products (e.g. fatty acids) through the food-chain. Chemoecology further publishes papers that relate to the evolution and ecology of interactions mediated by non-volatile compounds (e.g. adhesive secretions). Mechanistic approaches may include the identification, biosynthesis and metabolism of substances that carry information and the elucidation of receptor- and transduction systems using physiological, biochemical and molecular techniques. Papers describing the structure and functional morphology of organs involved in chemical communication will also be considered.
期刊最新文献
Pyrrolizidine alkaloids in tiger moths: trends and knowledge gaps Cuticular hydrocarbons as host recognition cues in specialist and generalist endoparasitoids How to chew gum: the post-ingestion fate of foliar secondary compounds consumed by a eucalypt herbivore Correction: The variability of iridomyrmecin, the venom of the Argentine ant, in its native and invasive ranges Exploring the venom of Ectatomma brunneum Smith (Hymenoptera: Formicidae)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1