Constructing iron-group doped metal–organic framework films on hematite photoanodes for efficient solar water splitting

IF 23.2 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Advanced Composites and Hybrid Materials Pub Date : 2023-10-21 DOI:10.1007/s42114-023-00777-3
Xiu-Shuang Xing, Xuyang Zeng, Zhongyuan Zhou, Zeinhom M. El-Bahy, Mohamed H. Helal, Qianyu Gao, Hassan Algadi, Peilin Song, Xuzhao Liu, Xinru Zhang, Jimin Du
{"title":"Constructing iron-group doped metal–organic framework films on hematite photoanodes for efficient solar water splitting","authors":"Xiu-Shuang Xing,&nbsp;Xuyang Zeng,&nbsp;Zhongyuan Zhou,&nbsp;Zeinhom M. El-Bahy,&nbsp;Mohamed H. Helal,&nbsp;Qianyu Gao,&nbsp;Hassan Algadi,&nbsp;Peilin Song,&nbsp;Xuzhao Liu,&nbsp;Xinru Zhang,&nbsp;Jimin Du","doi":"10.1007/s42114-023-00777-3","DOIUrl":null,"url":null,"abstract":"<div><p>Hematite (α-Fe<sub>2</sub>O<sub>3</sub>) is considered a highly promising candidate material for photoelectrochemical water splitting (PEC-WS) due to its suitable band gap and band edge location. Nevertheless, enhancing PEC-WS performance through the surface construction of low-cost, highly efficient, and stable electrocatalysts still remains a challenge. This work presents a facile strategy to fabricate α-Fe<sub>2</sub>O<sub>3</sub> photoanodes modified with the metal–organic framework films doped with iron-group elements (Fe, Co, and Ni), which forms abundant active sites and leverage bimetallic synergistic effects. The optimal photocurrent density of FTO/Sn@α-Fe<sub>2</sub>O<sub>3</sub>/MIL-125/Co photoanode achieves 1.97 mA/cm<sup>2</sup> at 1.23 V<sub>RHE</sub>, which is 2.3 times that of the pure α-Fe<sub>2</sub>O<sub>3</sub> photoanode. The on-set potential exhibits a cathodic shift of 0.1 V. The MIL-125 catalyst with Co doping exhibits the most excellent PEC-WS performance among the three dopants (Fe, Co, and Ni), which can be primarily attributed to more abundant active sites, the lower photogenerated carrier recombination, and the enhanced charge separation and transfer efficiency.</p><h3>Graphical Abstract</h3>\n <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\n </div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"6 6","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-023-00777-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Hematite (α-Fe2O3) is considered a highly promising candidate material for photoelectrochemical water splitting (PEC-WS) due to its suitable band gap and band edge location. Nevertheless, enhancing PEC-WS performance through the surface construction of low-cost, highly efficient, and stable electrocatalysts still remains a challenge. This work presents a facile strategy to fabricate α-Fe2O3 photoanodes modified with the metal–organic framework films doped with iron-group elements (Fe, Co, and Ni), which forms abundant active sites and leverage bimetallic synergistic effects. The optimal photocurrent density of FTO/Sn@α-Fe2O3/MIL-125/Co photoanode achieves 1.97 mA/cm2 at 1.23 VRHE, which is 2.3 times that of the pure α-Fe2O3 photoanode. The on-set potential exhibits a cathodic shift of 0.1 V. The MIL-125 catalyst with Co doping exhibits the most excellent PEC-WS performance among the three dopants (Fe, Co, and Ni), which can be primarily attributed to more abundant active sites, the lower photogenerated carrier recombination, and the enhanced charge separation and transfer efficiency.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在赤铁矿光阳极上构建铁基掺杂金属有机骨架膜用于高效太阳能水分解
赤铁矿(α-Fe2O3)由于其合适的带隙和带边位置,被认为是一种非常有前途的光电化学水分解(PEC-WS)候选材料。然而,通过低成本、高效和稳定的电催化剂的表面构建来增强PEC-WS性能仍然是一个挑战。这项工作提出了一种简单的策略来制备用掺杂有铁族元素(Fe、Co和Ni)的金属-有机框架膜修饰的α-Fe2O3光阳极,该膜形成丰富的活性位点并利用双金属协同效应。FTO/Sn@α-Fe2O3/MIL-125/Co光阳极的最佳光电流密度在1.23VRHE下达到1.97mA/cm2,是纯α-Fe2O3光阳极的2.3倍。在三种掺杂剂(Fe、Co和Ni)中,具有Co掺杂的MIL-125催化剂表现出最优异的PEC-WS性能,这主要归因于更丰富的活性位点、更低的光生载流子复合以及增强的电荷分离和转移效率。图形摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.00
自引率
21.40%
发文量
185
期刊介绍: Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field. The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest. Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials. Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.
期刊最新文献
Photocatalytic degradation of Toluene by three-dimensional monolithic Titanium Dioxide / Cuprous Oxide foams with Z-schemed Heterojunction Development and characterization of zein/gum Arabic nanocomposites incorporated edible films for improving strawberry preservation Dynamically interactive nanoparticles in three-dimensional microbeads for enhanced sensitivity, stability, and filtration in colorimetric sensing Efficient charge separation in Z-scheme heterojunctions induced by chemical bonding-enhanced internal electric field for promoting photocatalytic conversion of corn stover to C1/C2 gases Multifunctional PVA/PNIPAM conductive hydrogel sensors enabled human-machine interaction intelligent rehabilitation training
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1