Lin Qiuhong, Peng Tao, Su Zhou, Qiu Hui, Li Xiao, Cong Qiang
{"title":"Research Status of Deployment and Folding Technology of Large-Scale Membrane Sunshield in Space Mission","authors":"Lin Qiuhong, Peng Tao, Su Zhou, Qiu Hui, Li Xiao, Cong Qiang","doi":"10.1007/s42423-022-00118-4","DOIUrl":null,"url":null,"abstract":"<div><p>High-resolution observation requires the design of space telescopes with larger and larger aperture. Larger but not heavier deployable sunshields are essentially needed. Due to the advantages such as smaller storage volume and lightweight, the membrane structure can meet the demanding requirements of the design of larger membrane sunshields and has gradually become a current research hotspot. This paper summarizes the research progresses of sunshield deployment technology from three categories: mechanically driven deployment, elastic deployment, and inflatable deployment. The folding methods of membrane sunshields with different geometric shapes are compared, and the research status of membrane folding technology is summarized. The summary gives some suggestions on future sunshield deployment and folding technology.</p></div>","PeriodicalId":100039,"journal":{"name":"Advances in Astronautics Science and Technology","volume":"5 3","pages":"227 - 234"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronautics Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42423-022-00118-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
High-resolution observation requires the design of space telescopes with larger and larger aperture. Larger but not heavier deployable sunshields are essentially needed. Due to the advantages such as smaller storage volume and lightweight, the membrane structure can meet the demanding requirements of the design of larger membrane sunshields and has gradually become a current research hotspot. This paper summarizes the research progresses of sunshield deployment technology from three categories: mechanically driven deployment, elastic deployment, and inflatable deployment. The folding methods of membrane sunshields with different geometric shapes are compared, and the research status of membrane folding technology is summarized. The summary gives some suggestions on future sunshield deployment and folding technology.