Omar Alkhazragi, Hang Lu, Wenbo Yan, Nawal Almaymoni, Tae-Yong Park, Yue Wang, Tien Khee Ng, Boon S. Ooi
{"title":"Semiconductor Emitters in Entropy Sources for Quantum Random Number Generation","authors":"Omar Alkhazragi, Hang Lu, Wenbo Yan, Nawal Almaymoni, Tae-Yong Park, Yue Wang, Tien Khee Ng, Boon S. Ooi","doi":"10.1002/andp.202300289","DOIUrl":null,"url":null,"abstract":"<p>Random number generation (RNG) is needed for a myriad of applications ranging from secure communication encryption to numerical simulations to sports and games. However, generating truly random numbers can be elusive. Pseudorandom bit generation using computer algorithms provides a high random bit generation rate. Nevertheless, the reliance on predefined algorithms makes it deterministic and predictable once initial conditions are known. Relying on physical phenomena (such as measuring electrical noise or even rolling dice) can achieve a less predictable sequence of bits. Furthermore, if the physical phenomena originate from quantum effects, they can be truly random and completely unpredictable due to quantum indeterminacy. Traditionally, physical RNG is significantly slower than pseudorandom techniques. To meet the demand for high-speed RNG with perfect unpredictability, semiconductor light sources are adopted as parts of the sources of randomness, i.e., entropy sources, in quantum RNG (QRNG) systems. The high speed of their noise, the high efficiency, and the small scale of these devices make them ideal for chip-scale QRNG. Here, the applications and recent advances of QRNG are reviewed using semiconductor emitters. Finally, the performance of these emitters is compared and discuss their potential in future technologies.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"535 9","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/andp.202300289","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202300289","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Random number generation (RNG) is needed for a myriad of applications ranging from secure communication encryption to numerical simulations to sports and games. However, generating truly random numbers can be elusive. Pseudorandom bit generation using computer algorithms provides a high random bit generation rate. Nevertheless, the reliance on predefined algorithms makes it deterministic and predictable once initial conditions are known. Relying on physical phenomena (such as measuring electrical noise or even rolling dice) can achieve a less predictable sequence of bits. Furthermore, if the physical phenomena originate from quantum effects, they can be truly random and completely unpredictable due to quantum indeterminacy. Traditionally, physical RNG is significantly slower than pseudorandom techniques. To meet the demand for high-speed RNG with perfect unpredictability, semiconductor light sources are adopted as parts of the sources of randomness, i.e., entropy sources, in quantum RNG (QRNG) systems. The high speed of their noise, the high efficiency, and the small scale of these devices make them ideal for chip-scale QRNG. Here, the applications and recent advances of QRNG are reviewed using semiconductor emitters. Finally, the performance of these emitters is compared and discuss their potential in future technologies.
期刊介绍:
Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.