{"title":"A comprehensive perspective on sustainable bioprocessing through extractive fermentation: challenges and prospects","authors":"Ramya Muniasamy, Ponnusami Venkatachalam, Vivek Rangarajan, Subhranshu Samal, Senthilkumar Rathnasamy","doi":"10.1007/s11157-023-09666-z","DOIUrl":null,"url":null,"abstract":"<div><p>Extractive fermentation is a potential process intensification integrated with aqueous two-phase extraction for simultaneous in-situ product recovery during fermentation to improve the efficiency of any bioprocess industry. This minimizes the innate product inhibitions, recovery, operational issues, and sustainability during conventional fermentation. The efficiency of the extraction process is hampered by the toxicity, non-biodegradability, and recycling of solvents associated with two-phase extraction. In comparison to conventional fermentation and purification techniques, extractive fermentation has several benefits such as higher product yields, lower costs for subsequent processing, and the ability to synthesize molecules that are challenging to recover using traditional methods. Extractive fermentation is a sustainable method for enhanced product recovery with the adaptability of reactor and solvent recyclability. An in-depth discussion of the necessity for this technology, the significance of green solvent selectivity, reactor modification at the standpoint of green engineering is addressed in this review. The overview aims to shed light on the importance of life cycle assessment and economic analysis on process integration in facilitating the development of more eco-friendly bioprocessing systems for replacing in-situ extraction technologies.</p><h3>Graphical abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":754,"journal":{"name":"Reviews in Environmental Science and Bio/Technology","volume":"22 3","pages":"715 - 737"},"PeriodicalIF":8.6000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11157-023-09666-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Environmental Science and Bio/Technology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11157-023-09666-z","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Extractive fermentation is a potential process intensification integrated with aqueous two-phase extraction for simultaneous in-situ product recovery during fermentation to improve the efficiency of any bioprocess industry. This minimizes the innate product inhibitions, recovery, operational issues, and sustainability during conventional fermentation. The efficiency of the extraction process is hampered by the toxicity, non-biodegradability, and recycling of solvents associated with two-phase extraction. In comparison to conventional fermentation and purification techniques, extractive fermentation has several benefits such as higher product yields, lower costs for subsequent processing, and the ability to synthesize molecules that are challenging to recover using traditional methods. Extractive fermentation is a sustainable method for enhanced product recovery with the adaptability of reactor and solvent recyclability. An in-depth discussion of the necessity for this technology, the significance of green solvent selectivity, reactor modification at the standpoint of green engineering is addressed in this review. The overview aims to shed light on the importance of life cycle assessment and economic analysis on process integration in facilitating the development of more eco-friendly bioprocessing systems for replacing in-situ extraction technologies.
期刊介绍:
Reviews in Environmental Science and Bio/Technology is a publication that offers easily comprehensible, reliable, and well-rounded perspectives and evaluations in the realm of environmental science and (bio)technology. It disseminates the most recent progressions and timely compilations of groundbreaking scientific discoveries, technological advancements, practical applications, policy developments, and societal concerns encompassing all facets of environmental science and (bio)technology. Furthermore, it tackles broader aspects beyond the natural sciences, incorporating subjects such as education, funding, policy-making, intellectual property, and societal influence.