REDS: Random ensemble deep spatial prediction

IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Environmetrics Pub Date : 2022-12-02 DOI:10.1002/env.2780
Ranadeep Daw, Christopher K. Wikle
{"title":"REDS: Random ensemble deep spatial prediction","authors":"Ranadeep Daw,&nbsp;Christopher K. Wikle","doi":"10.1002/env.2780","DOIUrl":null,"url":null,"abstract":"<p>There has been a great deal of recent interest in the development of spatial prediction algorithms for very large datasets and/or prediction domains. These methods have primarily been developed in the spatial statistics community, but there has been growing interest in the machine learning community for such methods, primarily driven by the success of deep Gaussian process regression approaches and deep convolutional neural networks. These methods are often computationally expensive to train and implement and consequently, there has been a resurgence of interest in random projections and deep learning models based on random weights—so called reservoir computing methods. Here, we combine several of these ideas to develop the random ensemble deep spatial (REDS) approach to predict spatial data. The procedure uses random Fourier features as inputs to an extreme learning machine (a deep neural model with random weights), and with calibrated ensembles of outputs from this model based on different random weights, it provides a simple uncertainty quantification. The REDS method is demonstrated on simulated data and on a classic large satellite data set.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"34 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2780","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 4

Abstract

There has been a great deal of recent interest in the development of spatial prediction algorithms for very large datasets and/or prediction domains. These methods have primarily been developed in the spatial statistics community, but there has been growing interest in the machine learning community for such methods, primarily driven by the success of deep Gaussian process regression approaches and deep convolutional neural networks. These methods are often computationally expensive to train and implement and consequently, there has been a resurgence of interest in random projections and deep learning models based on random weights—so called reservoir computing methods. Here, we combine several of these ideas to develop the random ensemble deep spatial (REDS) approach to predict spatial data. The procedure uses random Fourier features as inputs to an extreme learning machine (a deep neural model with random weights), and with calibrated ensembles of outputs from this model based on different random weights, it provides a simple uncertainty quantification. The REDS method is demonstrated on simulated data and on a classic large satellite data set.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
REDS:随机集合深空间预测
最近,人们对开发用于非常大的数据集和/或预测域的空间预测算法非常感兴趣。这些方法主要是在空间统计学界开发的,但机器学习界对这些方法的兴趣越来越大,这主要是由于深度高斯过程回归方法和深度卷积神经网络的成功。这些方法的训练和实现往往计算成本高昂,因此,人们对基于随机权重的随机投影和深度学习模型(即所谓的储层计算方法)重新产生了兴趣。在这里,我们将其中的几个想法结合起来,开发了随机集成深空间(REDS)方法来预测空间数据。该程序使用随机傅立叶特征作为极限学习机(一种具有随机权重的深度神经模型)的输入,并基于不同的随机权重对该模型的输出进行校准,从而提供简单的不确定性量化。REDS方法在模拟数据和经典的大型卫星数据集上进行了演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmetrics
Environmetrics 环境科学-环境科学
CiteScore
2.90
自引率
17.60%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences. The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.
期刊最新文献
Issue Information Bias correction of daily precipitation from climate models, using the Q-GAM method Issue Information A hierarchical constrained density regression model for predicting cluster-level dose-response Under the mantra: ‘Make use of colorblind friendly graphs’
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1