{"title":"Magic partially filled arrays on abelian groups","authors":"Fiorenza Morini, Marco Antonio Pellegrini","doi":"10.1002/jcd.21886","DOIUrl":null,"url":null,"abstract":"<p>In this paper we introduce a special class of partially filled arrays. A magic partially filled array <math>\n <semantics>\n <mrow>\n <msub>\n <mtext>MPF</mtext>\n <mi>Ω</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>m</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>;</mo>\n <mi>s</mi>\n <mo>,</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\text{MPF}}_{{\\rm{\\Omega }}}(m,n;s,k)$</annotation>\n </semantics></math> on a subset <math>\n <semantics>\n <mrow>\n <mi>Ω</mi>\n </mrow>\n <annotation> ${\\rm{\\Omega }}$</annotation>\n </semantics></math> of an abelian group <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>Γ</mi>\n <mo>,</mo>\n <mo>+</mo>\n <mo>)</mo>\n </mrow>\n <annotation> $({\\rm{\\Gamma }},+)$</annotation>\n </semantics></math> is a partially filled array of size <math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>×</mo>\n <mi>n</mi>\n </mrow>\n <annotation> $m\\times n$</annotation>\n </semantics></math> with entries in <math>\n <semantics>\n <mrow>\n <mi>Ω</mi>\n </mrow>\n <annotation> ${\\rm{\\Omega }}$</annotation>\n </semantics></math> such that (i) every <math>\n <semantics>\n <mrow>\n <mi>ω</mi>\n <mo>∈</mo>\n <mi>Ω</mi>\n </mrow>\n <annotation> $\\omega \\in {\\rm{\\Omega }}$</annotation>\n </semantics></math> appears once in the array; (ii) each row contains <math>\n <semantics>\n <mrow>\n <mi>s</mi>\n </mrow>\n <annotation> $s$</annotation>\n </semantics></math> filled cells and each column contains <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> filled cells; (iii) there exist (not necessarily distinct) elements <math>\n <semantics>\n <mrow>\n <mi>x</mi>\n <mo>,</mo>\n <mi>y</mi>\n <mo>∈</mo>\n <mi>Γ</mi>\n </mrow>\n <annotation> $x,y\\in {\\rm{\\Gamma }}$</annotation>\n </semantics></math> such that the sum of the elements in each row is <math>\n <semantics>\n <mrow>\n <mi>x</mi>\n </mrow>\n <annotation> $x$</annotation>\n </semantics></math> and the sum of the elements in each column is <math>\n <semantics>\n <mrow>\n <mi>y</mi>\n </mrow>\n <annotation> $y$</annotation>\n </semantics></math>. In particular, if <math>\n <semantics>\n <mrow>\n <mi>x</mi>\n <mo>=</mo>\n <mi>y</mi>\n <mo>=</mo>\n <msub>\n <mn>0</mn>\n <mi>Γ</mi>\n </msub>\n </mrow>\n <annotation> $x=y={0}_{{\\rm{\\Gamma }}}$</annotation>\n </semantics></math>, we have a zero-sum magic partially filled array <math>\n <semantics>\n <mrow>\n <mmultiscripts>\n <mtext>MPF</mtext>\n <mi>Ω</mi>\n <none></none>\n <mprescripts></mprescripts>\n <none></none>\n <mn>0</mn>\n </mmultiscripts>\n <mrow>\n <mo>(</mo>\n <mi>m</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>;</mo>\n <mi>s</mi>\n <mo>,</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${}^{0}\\text{MPF}_{{\\rm{\\Omega }}}(m,n;s,k)$</annotation>\n </semantics></math>. Examples of these objects are magic rectangles, <math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n </mrow>\n <annotation> ${\\rm{\\Gamma }}$</annotation>\n </semantics></math>-magic rectangles, signed magic arrays, (integer or noninteger) Heffter arrays. Here, we give necessary and sufficient conditions for the existence of a magic rectangle with empty cells, that is, of an <math>\n <semantics>\n <mrow>\n <msub>\n <mtext>MPF</mtext>\n <mi>Ω</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>m</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>;</mo>\n <mi>s</mi>\n <mo>,</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\text{MPF}}_{{\\rm{\\Omega }}}(m,n;s,k)$</annotation>\n </semantics></math> where <math>\n <semantics>\n <mrow>\n <mi>Ω</mi>\n <mo>=</mo>\n <mrow>\n <mo>{</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <mi>n</mi>\n <mi>k</mi>\n <mo>}</mo>\n </mrow>\n <mo>⊂</mo>\n <mi>ℤ</mi>\n </mrow>\n <annotation> ${\\rm{\\Omega }}=\\{1,2,\\ldots ,nk\\}\\subset {\\rm{{\\mathbb{Z}}}}$</annotation>\n </semantics></math>. We also construct zero-sum magic partially filled arrays when <math>\n <semantics>\n <mrow>\n <mi>Ω</mi>\n </mrow>\n <annotation> ${\\rm{\\Omega }}$</annotation>\n </semantics></math> is the abelian group <math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n </mrow>\n <annotation> ${\\rm{\\Gamma }}$</annotation>\n </semantics></math> or the set of its nonzero elements.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"31 8","pages":"347-367"},"PeriodicalIF":0.5000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21886","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21886","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we introduce a special class of partially filled arrays. A magic partially filled array on a subset of an abelian group is a partially filled array of size with entries in such that (i) every appears once in the array; (ii) each row contains filled cells and each column contains filled cells; (iii) there exist (not necessarily distinct) elements such that the sum of the elements in each row is and the sum of the elements in each column is . In particular, if , we have a zero-sum magic partially filled array . Examples of these objects are magic rectangles, -magic rectangles, signed magic arrays, (integer or noninteger) Heffter arrays. Here, we give necessary and sufficient conditions for the existence of a magic rectangle with empty cells, that is, of an where . We also construct zero-sum magic partially filled arrays when is the abelian group or the set of its nonzero elements.
期刊介绍:
The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including:
block designs, t-designs, pairwise balanced designs and group divisible designs
Latin squares, quasigroups, and related algebras
computational methods in design theory
construction methods
applications in computer science, experimental design theory, and coding theory
graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics
finite geometry and its relation with design theory.
algebraic aspects of design theory.
Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.