Magic partially filled arrays on abelian groups

IF 0.5 4区 数学 Q3 MATHEMATICS Journal of Combinatorial Designs Pub Date : 2023-05-04 DOI:10.1002/jcd.21886
Fiorenza Morini, Marco Antonio Pellegrini
{"title":"Magic partially filled arrays on abelian groups","authors":"Fiorenza Morini,&nbsp;Marco Antonio Pellegrini","doi":"10.1002/jcd.21886","DOIUrl":null,"url":null,"abstract":"<p>In this paper we introduce a special class of partially filled arrays. A magic partially filled array <math>\n <semantics>\n <mrow>\n <msub>\n <mtext>MPF</mtext>\n <mi>Ω</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>m</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>;</mo>\n <mi>s</mi>\n <mo>,</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\text{MPF}}_{{\\rm{\\Omega }}}(m,n;s,k)$</annotation>\n </semantics></math> on a subset <math>\n <semantics>\n <mrow>\n <mi>Ω</mi>\n </mrow>\n <annotation> ${\\rm{\\Omega }}$</annotation>\n </semantics></math> of an abelian group <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>Γ</mi>\n <mo>,</mo>\n <mo>+</mo>\n <mo>)</mo>\n </mrow>\n <annotation> $({\\rm{\\Gamma }},+)$</annotation>\n </semantics></math> is a partially filled array of size <math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>×</mo>\n <mi>n</mi>\n </mrow>\n <annotation> $m\\times n$</annotation>\n </semantics></math> with entries in <math>\n <semantics>\n <mrow>\n <mi>Ω</mi>\n </mrow>\n <annotation> ${\\rm{\\Omega }}$</annotation>\n </semantics></math> such that (i) every <math>\n <semantics>\n <mrow>\n <mi>ω</mi>\n <mo>∈</mo>\n <mi>Ω</mi>\n </mrow>\n <annotation> $\\omega \\in {\\rm{\\Omega }}$</annotation>\n </semantics></math> appears once in the array; (ii) each row contains <math>\n <semantics>\n <mrow>\n <mi>s</mi>\n </mrow>\n <annotation> $s$</annotation>\n </semantics></math> filled cells and each column contains <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> filled cells; (iii) there exist (not necessarily distinct) elements <math>\n <semantics>\n <mrow>\n <mi>x</mi>\n <mo>,</mo>\n <mi>y</mi>\n <mo>∈</mo>\n <mi>Γ</mi>\n </mrow>\n <annotation> $x,y\\in {\\rm{\\Gamma }}$</annotation>\n </semantics></math> such that the sum of the elements in each row is <math>\n <semantics>\n <mrow>\n <mi>x</mi>\n </mrow>\n <annotation> $x$</annotation>\n </semantics></math> and the sum of the elements in each column is <math>\n <semantics>\n <mrow>\n <mi>y</mi>\n </mrow>\n <annotation> $y$</annotation>\n </semantics></math>. In particular, if <math>\n <semantics>\n <mrow>\n <mi>x</mi>\n <mo>=</mo>\n <mi>y</mi>\n <mo>=</mo>\n <msub>\n <mn>0</mn>\n <mi>Γ</mi>\n </msub>\n </mrow>\n <annotation> $x=y={0}_{{\\rm{\\Gamma }}}$</annotation>\n </semantics></math>, we have a zero-sum magic partially filled array <math>\n <semantics>\n <mrow>\n <mmultiscripts>\n <mtext>MPF</mtext>\n <mi>Ω</mi>\n <none></none>\n <mprescripts></mprescripts>\n <none></none>\n <mn>0</mn>\n </mmultiscripts>\n <mrow>\n <mo>(</mo>\n <mi>m</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>;</mo>\n <mi>s</mi>\n <mo>,</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${}^{0}\\text{MPF}_{{\\rm{\\Omega }}}(m,n;s,k)$</annotation>\n </semantics></math>. Examples of these objects are magic rectangles, <math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n </mrow>\n <annotation> ${\\rm{\\Gamma }}$</annotation>\n </semantics></math>-magic rectangles, signed magic arrays, (integer or noninteger) Heffter arrays. Here, we give necessary and sufficient conditions for the existence of a magic rectangle with empty cells, that is, of an <math>\n <semantics>\n <mrow>\n <msub>\n <mtext>MPF</mtext>\n <mi>Ω</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>m</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>;</mo>\n <mi>s</mi>\n <mo>,</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\text{MPF}}_{{\\rm{\\Omega }}}(m,n;s,k)$</annotation>\n </semantics></math> where <math>\n <semantics>\n <mrow>\n <mi>Ω</mi>\n <mo>=</mo>\n <mrow>\n <mo>{</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <mi>n</mi>\n <mi>k</mi>\n <mo>}</mo>\n </mrow>\n <mo>⊂</mo>\n <mi>ℤ</mi>\n </mrow>\n <annotation> ${\\rm{\\Omega }}=\\{1,2,\\ldots ,nk\\}\\subset {\\rm{{\\mathbb{Z}}}}$</annotation>\n </semantics></math>. We also construct zero-sum magic partially filled arrays when <math>\n <semantics>\n <mrow>\n <mi>Ω</mi>\n </mrow>\n <annotation> ${\\rm{\\Omega }}$</annotation>\n </semantics></math> is the abelian group <math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n </mrow>\n <annotation> ${\\rm{\\Gamma }}$</annotation>\n </semantics></math> or the set of its nonzero elements.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"31 8","pages":"347-367"},"PeriodicalIF":0.5000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21886","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21886","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we introduce a special class of partially filled arrays. A magic partially filled array MPF Ω ( m , n ; s , k ) ${\text{MPF}}_{{\rm{\Omega }}}(m,n;s,k)$ on a subset Ω ${\rm{\Omega }}$ of an abelian group ( Γ , + ) $({\rm{\Gamma }},+)$ is a partially filled array of size m × n $m\times n$ with entries in Ω ${\rm{\Omega }}$ such that (i) every ω Ω $\omega \in {\rm{\Omega }}$ appears once in the array; (ii) each row contains s $s$ filled cells and each column contains k $k$ filled cells; (iii) there exist (not necessarily distinct) elements x , y Γ $x,y\in {\rm{\Gamma }}$ such that the sum of the elements in each row is x $x$ and the sum of the elements in each column is y $y$ . In particular, if x = y = 0 Γ $x=y={0}_{{\rm{\Gamma }}}$ , we have a zero-sum magic partially filled array MPF Ω 0 ( m , n ; s , k ) ${}^{0}\text{MPF}_{{\rm{\Omega }}}(m,n;s,k)$ . Examples of these objects are magic rectangles, Γ ${\rm{\Gamma }}$ -magic rectangles, signed magic arrays, (integer or noninteger) Heffter arrays. Here, we give necessary and sufficient conditions for the existence of a magic rectangle with empty cells, that is, of an MPF Ω ( m , n ; s , k ) ${\text{MPF}}_{{\rm{\Omega }}}(m,n;s,k)$ where Ω = { 1 , 2 , , n k } ${\rm{\Omega }}=\{1,2,\ldots ,nk\}\subset {\rm{{\mathbb{Z}}}}$ . We also construct zero-sum magic partially filled arrays when Ω ${\rm{\Omega }}$ is the abelian group Γ ${\rm{\Gamma }}$ or the set of its nonzero elements.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阿贝尔群上的魔术部分填充数组
本文介绍了一类特殊的部分填充数组。一种神奇的部分填充阵列MPFΩ子集Ω上的(m,n;s,k)$阿贝尔群(Γ,+)$({\rm{\Gamma}},+×n$m\times n$中的条目为Ω${\rm{\Omega}}$,使得(i)每个ω∈Ω$\Omega\in{\rm{\Omega}}$在数组中出现一次;(ii)每行包含s$s$填充单元格,每列包含k$k$填充单元格;(iii)存在(不一定不同)元素x、y∈Γ$x,y\in{\rm{\Gamma}}$,使得每行中元素的和为x$x$,而每列中元素的总和为y$y$。特别地,如果x=y=0Γ$x=y={0}_{\rm{\Gamma}}$,我们有一个零和魔术部分填充阵列MPFΩ0(m,n;s,k)${}^{0}\text{MPF}_{\rm{\Omega}}(m,n;s,k)$。这些对象的例子有魔术矩形、Γ${\rm{\Gamma}}$魔术矩形、有符号魔术数组、(整数或非整数)Heffter数组。在这里,我们给出了一个具有空单元格的魔术矩形存在的充要条件,即,MPFΩ(m,n;s,k)${\text{MPF}}_{\rm{\Omega}}}(m,n;s,k)$其中Ω={1,2,…,n k}⊂ℤ ${\rm{\Omega}}=\{1,2,\ldots,nk\}\subet{\rm{\mathbb{Z}}}}$。 当Ω${\rm{\Omega}}$是阿贝尔群Γ$或其非零元素的集合时,我们还构造了零和魔术部分填充数组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
期刊最新文献
Issue Information Issue Information Completely reducible super-simple ( v , 4 , 4 ) $(v,4,4)$ -BIBDs and related constant weight codes Characterising ovoidal cones by their hyperplane intersection numbers Partitioning the projective plane into two incidence-rich parts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1