Large-scale environmental data science with ExaGeoStatR

IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Environmetrics Pub Date : 2022-11-06 DOI:10.1002/env.2770
Sameh Abdulah, Yuxiao Li, Jian Cao, Hatem Ltaief, David E. Keyes, Marc G. Genton, Ying Sun
{"title":"Large-scale environmental data science with ExaGeoStatR","authors":"Sameh Abdulah,&nbsp;Yuxiao Li,&nbsp;Jian Cao,&nbsp;Hatem Ltaief,&nbsp;David E. Keyes,&nbsp;Marc G. Genton,&nbsp;Ying Sun","doi":"10.1002/env.2770","DOIUrl":null,"url":null,"abstract":"<p>Parallel computing in exact Gaussian process (GP) calculations becomes necessary for avoiding computational and memory restrictions associated with large-scale environmental data science applications. The exact evaluation of the Gaussian log-likelihood function requires <math>\n <mi>O</mi>\n <mo>(</mo>\n <msup>\n <mrow>\n <mi>n</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n <mo>)</mo></math> storage and <math>\n <mi>O</mi>\n <mo>(</mo>\n <msup>\n <mrow>\n <mi>n</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msup>\n <mo>)</mo></math> operations, where <math>\n <mrow>\n <mi>n</mi>\n </mrow></math> is the number of geographical locations. Thus, exactly computing the log-likelihood function with a large number of locations requires exploiting the power of existing parallel computing hardware systems, such as shared-memory, possibly equipped with GPUs, and distributed-memory systems, to solve this exact computational complexity. In this article, we present <i>ExaGeoStatR</i>, a package for exascale geostatistics in <i>R</i> that supports a parallel computation of the exact maximum likelihood function on a wide variety of parallel architectures. Furthermore, the package allows scaling existing GP methods to a large spatial/temporal domain. Prohibitive exact solutions for large geostatistical problems become possible with <i>ExaGeoStatR</i>. Parallelization in <i>ExaGeoStatR</i> depends on breaking down the numerical linear algebra operations in the log-likelihood function into a set of tasks and rendering them for a task-based programming model. The package can be used directly through the <i>R</i> environment on parallel systems without the user needing any <i>C</i>, <i>CUDA</i>, or <i>MPI</i> knowledge. Currently, <i>ExaGeoStatR</i> supports several maximum likelihood computation variants such as exact, diagonal super tile and tile low-rank approximations, and mixed-precision. <i>ExaGeoStatR</i> also provides a tool to simulate large-scale synthetic datasets. These datasets can help assess different implementations of the maximum log-likelihood approximation methods. Herein, we show the implementation details of <i>ExaGeoStatR</i>, analyze its performance on various parallel architectures, and assess its accuracy using synthetic datasets with up to 250K observations. The experimental analysis covers the exact computation of <i>ExaGeoStatR</i> to demonstrate the parallel capabilities of the package. We provide a hands-on tutorial to analyze a sea surface temperature real dataset. The performance evaluation involves comparisons with the popular packages <i>GeoR</i>, <i>fields</i>, and <i>bigGP</i> for exact Gaussian likelihood evaluation. The approximation methods in <i>ExaGeoStatR</i> are not considered in this article since they were analyzed in previous studies.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"34 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2770","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 4

Abstract

Parallel computing in exact Gaussian process (GP) calculations becomes necessary for avoiding computational and memory restrictions associated with large-scale environmental data science applications. The exact evaluation of the Gaussian log-likelihood function requires O ( n 2 ) storage and O ( n 3 ) operations, where n is the number of geographical locations. Thus, exactly computing the log-likelihood function with a large number of locations requires exploiting the power of existing parallel computing hardware systems, such as shared-memory, possibly equipped with GPUs, and distributed-memory systems, to solve this exact computational complexity. In this article, we present ExaGeoStatR, a package for exascale geostatistics in R that supports a parallel computation of the exact maximum likelihood function on a wide variety of parallel architectures. Furthermore, the package allows scaling existing GP methods to a large spatial/temporal domain. Prohibitive exact solutions for large geostatistical problems become possible with ExaGeoStatR. Parallelization in ExaGeoStatR depends on breaking down the numerical linear algebra operations in the log-likelihood function into a set of tasks and rendering them for a task-based programming model. The package can be used directly through the R environment on parallel systems without the user needing any C, CUDA, or MPI knowledge. Currently, ExaGeoStatR supports several maximum likelihood computation variants such as exact, diagonal super tile and tile low-rank approximations, and mixed-precision. ExaGeoStatR also provides a tool to simulate large-scale synthetic datasets. These datasets can help assess different implementations of the maximum log-likelihood approximation methods. Herein, we show the implementation details of ExaGeoStatR, analyze its performance on various parallel architectures, and assess its accuracy using synthetic datasets with up to 250K observations. The experimental analysis covers the exact computation of ExaGeoStatR to demonstrate the parallel capabilities of the package. We provide a hands-on tutorial to analyze a sea surface temperature real dataset. The performance evaluation involves comparisons with the popular packages GeoR, fields, and bigGP for exact Gaussian likelihood evaluation. The approximation methods in ExaGeoStatR are not considered in this article since they were analyzed in previous studies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用ExaGeoStatR进行大规模环境数据科学
精确高斯过程(GP)计算中的并行计算对于避免与大规模环境数据科学应用相关的计算和内存限制是必要的。高斯对数似然函数的精确评估需要O(n2)存储和O(n 3)运算,其中n是地理位置的数量。因此,精确计算具有大量位置的对数似然函数需要利用现有并行计算硬件系统的能力,例如可能配备有GPU的共享存储器和分布式存储器系统,来解决这种精确的计算复杂性。在本文中,我们介绍了ExaGeoStatR,这是一个R中的exascale地质统计学包,支持在各种并行架构上并行计算精确的最大似然函数。此外,该包允许将现有的GP方法扩展到大的空间/时间域。使用ExaGeoStatR,大型地质统计学问题的禁止性精确解决方案成为可能。ExaGeoStatR中的并行化取决于将对数似然函数中的数值线性代数运算分解为一组任务,并为基于任务的编程模型呈现它们。该包可以在并行系统上直接通过R环境使用,而无需用户任何C、CUDA或MPI知识。目前,ExaGeoStatR支持几种最大似然计算变体,如精确、对角超瓦片和瓦片低秩近似,以及混合精度。ExaGeoStatR还提供了一个模拟大规模合成数据集的工具。这些数据集可以帮助评估最大对数似然近似方法的不同实现。在此,我们展示了ExaGeoStatR的实现细节,分析了它在各种并行架构上的性能,并使用具有高达250K观测值的合成数据集评估了它的准确性。实验分析涵盖了ExaGeoStatR的精确计算,以展示包的并行能力。我们提供了一个动手教程来分析海面温度真实数据集。性能评估包括与流行的软件包GeoR、fields和bigGP进行比较,以进行精确的高斯似然评估。ExaGeoStatR中的近似方法在本文中没有被考虑,因为它们在以前的研究中进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmetrics
Environmetrics 环境科学-环境科学
CiteScore
2.90
自引率
17.60%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences. The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.
期刊最新文献
Issue Information Bias correction of daily precipitation from climate models, using the Q-GAM method Issue Information A hierarchical constrained density regression model for predicting cluster-level dose-response Under the mantra: ‘Make use of colorblind friendly graphs’
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1