Long memory conditional random fields on regular lattices

IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Environmetrics Pub Date : 2023-06-28 DOI:10.1002/env.2817
Angela Ferretti, L. Ippoliti, P. Valentini, R. J. Bhansali
{"title":"Long memory conditional random fields on regular lattices","authors":"Angela Ferretti,&nbsp;L. Ippoliti,&nbsp;P. Valentini,&nbsp;R. J. Bhansali","doi":"10.1002/env.2817","DOIUrl":null,"url":null,"abstract":"<p>This paper draws its motivation from applications in geophysics, agricultural, and environmental sciences where empirical evidence of slow decay of correlations have been found for data observed on a regular lattice. Spatial ARFIMA models represent a widely used class of spatial models for analyzing such data. Here, we consider their generalization to conditional autoregressive fractional integrated moving average (CARFIMA) models, a larger class of long memory models which allows a wider range of correlation behavior. For this class we provide detailed descriptions of important representative models, make the necessary comparison with some other existing models, and discuss some important inferential and computational issues on estimation, simulation and long memory process approximation. Results from model fit comparison and predictive performance of CARFIMA models are also discussed through a statistical analysis of satellite land surface temperature data.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"34 5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2817","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2817","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This paper draws its motivation from applications in geophysics, agricultural, and environmental sciences where empirical evidence of slow decay of correlations have been found for data observed on a regular lattice. Spatial ARFIMA models represent a widely used class of spatial models for analyzing such data. Here, we consider their generalization to conditional autoregressive fractional integrated moving average (CARFIMA) models, a larger class of long memory models which allows a wider range of correlation behavior. For this class we provide detailed descriptions of important representative models, make the necessary comparison with some other existing models, and discuss some important inferential and computational issues on estimation, simulation and long memory process approximation. Results from model fit comparison and predictive performance of CARFIMA models are also discussed through a statistical analysis of satellite land surface temperature data.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
正则格上的长记忆条件随机场
本文的动机来自于地球物理学、农业和环境科学的应用,在这些应用中,在规则晶格上观察到的数据发现了相关性缓慢衰减的经验证据。空间ARFIMA模型代表了一类广泛使用的用于分析此类数据的空间模型。在这里,我们考虑将它们推广到条件自回归分数积分移动平均(CARFIMA)模型,这是一类更大的长记忆模型,允许更宽范围的相关性行为。对于这一类,我们提供了重要代表性模型的详细描述,与其他一些现有模型进行了必要的比较,并讨论了关于估计、模拟和长记忆过程近似的一些重要推理和计算问题。通过对卫星地表温度数据的统计分析,还讨论了CARFIMA模型的拟合比较结果和预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmetrics
Environmetrics 环境科学-环境科学
CiteScore
2.90
自引率
17.60%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences. The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.
期刊最新文献
Issue Information Bias correction of daily precipitation from climate models, using the Q-GAM method Issue Information A hierarchical constrained density regression model for predicting cluster-level dose-response Under the mantra: ‘Make use of colorblind friendly graphs’
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1