Environmental data science: Part 1

IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Environmetrics Pub Date : 2023-01-29 DOI:10.1002/env.2787
Andrew Zammit-Mangion, Nathaniel K. Newlands, Wesley S. Burr
{"title":"Environmental data science: Part 1","authors":"Andrew Zammit-Mangion, Nathaniel K. Newlands, Wesley S. Burr","doi":"10.1002/env.2787","DOIUrl":null,"url":null,"abstract":"Environmental data science is a multi‐disciplinary and mature field of research at the interface of statistics, machine learning, information technology, climate and environmental science. The two‐part special issue ‘Environmental Data Science’ comprises a set of research articles and opinion pieces led by statisticians who are at the forefront of the field. This editorial identifies and discusses common strands of research that appear in the contributions to Part 1, which largely focus on statistical methodology. These include temporal, spatial and spatio‐temporal modeling; statistical computing; machine learning and artificial intelligence; and the critical question of decision‐making in the presence of uncertainty. This editorial complements that of Part 2, which largely focuses on applications; see Burr, Newlands, and Zammit‐Mangion (2023).","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"34 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2787","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

Environmental data science is a multi‐disciplinary and mature field of research at the interface of statistics, machine learning, information technology, climate and environmental science. The two‐part special issue ‘Environmental Data Science’ comprises a set of research articles and opinion pieces led by statisticians who are at the forefront of the field. This editorial identifies and discusses common strands of research that appear in the contributions to Part 1, which largely focus on statistical methodology. These include temporal, spatial and spatio‐temporal modeling; statistical computing; machine learning and artificial intelligence; and the critical question of decision‐making in the presence of uncertainty. This editorial complements that of Part 2, which largely focuses on applications; see Burr, Newlands, and Zammit‐Mangion (2023).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环境数据科学:第1部分
环境数据科学是一个集统计学、机器学习、信息技术、气候与环境科学于一体的多学科、成熟的研究领域。由两部分组成的特刊《环境数据科学》包括一系列研究文章和观点文章,由该领域的前沿统计学家领导。这篇社论确定并讨论了第1部分的贡献中出现的常见研究线索,主要集中在统计方法上。其中包括时间、空间和时空建模;统计计算;机器学习和人工智能;以及在存在不确定性的情况下作出决策的关键问题。这篇社论是对第2部分的补充,第2部分主要关注应用程序;参见Burr、Newlands和Zammit Mangion(2023)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmetrics
Environmetrics 环境科学-环境科学
CiteScore
2.90
自引率
17.60%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences. The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.
期刊最新文献
Issue Information Bias correction of daily precipitation from climate models, using the Q-GAM method Issue Information A hierarchical constrained density regression model for predicting cluster-level dose-response Under the mantra: ‘Make use of colorblind friendly graphs’
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1