Sebastian G. Bouschery, Vera Blazevic, Frank T. Piller
{"title":"Augmenting human innovation teams with artificial intelligence: Exploring transformer-based language models","authors":"Sebastian G. Bouschery, Vera Blazevic, Frank T. Piller","doi":"10.1111/jpim.12656","DOIUrl":null,"url":null,"abstract":"<p>The use of transformer-based language models in artificial intelligence (AI) has increased adoption in various industries and led to significant productivity advancements in business operations. This article explores how these models can be used to augment human innovation teams in the new product development process, allowing for larger problem and solution spaces to be explored and ultimately leading to higher innovation performance. The article proposes the use of the AI-augmented double diamond framework to structure the exploration of how these models can assist in new product development (NPD) tasks, such as text summarization, sentiment analysis, and idea generation. It also discusses the limitations of the technology and the potential impact of AI on established practices in NPD. The article establishes a research agenda for exploring the use of language models in this area and the role of humans in hybrid innovation teams. (Note: Following the idea of this article, GPT-3 alone generated this abstract. Only minor formatting edits were performed by humans.)</p>","PeriodicalId":16900,"journal":{"name":"Journal of Product Innovation Management","volume":"40 2","pages":"139-153"},"PeriodicalIF":10.1000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpim.12656","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Product Innovation Management","FirstCategoryId":"91","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jpim.12656","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 26
Abstract
The use of transformer-based language models in artificial intelligence (AI) has increased adoption in various industries and led to significant productivity advancements in business operations. This article explores how these models can be used to augment human innovation teams in the new product development process, allowing for larger problem and solution spaces to be explored and ultimately leading to higher innovation performance. The article proposes the use of the AI-augmented double diamond framework to structure the exploration of how these models can assist in new product development (NPD) tasks, such as text summarization, sentiment analysis, and idea generation. It also discusses the limitations of the technology and the potential impact of AI on established practices in NPD. The article establishes a research agenda for exploring the use of language models in this area and the role of humans in hybrid innovation teams. (Note: Following the idea of this article, GPT-3 alone generated this abstract. Only minor formatting edits were performed by humans.)
期刊介绍:
The Journal of Product Innovation Management is a leading academic journal focused on research, theory, and practice in innovation and new product development. It covers a broad scope of issues crucial to successful innovation in both external and internal organizational environments. The journal aims to inform, provoke thought, and contribute to the knowledge and practice of new product development and innovation management. It welcomes original articles from organizations of all sizes and domains, including start-ups, small to medium-sized enterprises, and large corporations, as well as from consumer, business-to-business, and policy domains. The journal accepts various quantitative and qualitative methodologies, and authors from diverse disciplines and functional perspectives are encouraged to submit their work.