Air pollution estimation under air stagnation—A case study of Beijing

IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Environmetrics Pub Date : 2023-07-10 DOI:10.1002/env.2819
Ying Zhang, Song Xi Chen, Le Bao
{"title":"Air pollution estimation under air stagnation—A case study of Beijing","authors":"Ying Zhang,&nbsp;Song Xi Chen,&nbsp;Le Bao","doi":"10.1002/env.2819","DOIUrl":null,"url":null,"abstract":"<p>Air pollution continues to be a major environmental concern in China. The wind-driven transmission poses difficulties in understanding the air pollution patterns at the local level. The main objective of this study is to offer a straightforward approach for investigating the temporal trends and meteorological effects on the air pollutant concentrations during the generation process without being confounded by the complex wind-driven transmission effect. We focus on the hourly data of the three most common air pollutants: PM2.5, NO<math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_2 $$</annotation>\n </semantics></math>, and CO under air stagnation in Beijing, China, during 2014–2017. We find that the local pollution levels under air stagnation in Beijing have decreased over the years; winter is the severest month of the year; Sunday is the clearest day of the week. Our model also interpolates the air pollutant concentrations at sites without monitoring stations and provides a map of air pollution concentrations under air stagnation. The results could be used to identify locations where air pollutants easily accumulate.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"34 6","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2819","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2819","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

Air pollution continues to be a major environmental concern in China. The wind-driven transmission poses difficulties in understanding the air pollution patterns at the local level. The main objective of this study is to offer a straightforward approach for investigating the temporal trends and meteorological effects on the air pollutant concentrations during the generation process without being confounded by the complex wind-driven transmission effect. We focus on the hourly data of the three most common air pollutants: PM2.5, NO 2 $$ {}_2 $$ , and CO under air stagnation in Beijing, China, during 2014–2017. We find that the local pollution levels under air stagnation in Beijing have decreased over the years; winter is the severest month of the year; Sunday is the clearest day of the week. Our model also interpolates the air pollutant concentrations at sites without monitoring stations and provides a map of air pollution concentrations under air stagnation. The results could be used to identify locations where air pollutants easily accumulate.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
滞空条件下的大气污染估算——以北京为例
空气污染仍然是中国主要的环境问题。风力驱动的传输给理解地方一级的空气污染模式带来了困难。本研究的主要目的是提供一种直接的方法来调查发电过程中空气污染物浓度的时间趋势和气象影响,而不会被复杂的风驱动传输效应所混淆。我们关注的是2014-2017年中国北京三种最常见的空气污染物的小时数据:PM2.5、NO2$${}_2$$和空气停滞下的CO。我们发现,多年来,北京在空气停滞的情况下,局部污染水平有所下降;冬天是一年中最严酷的月份;星期天是一周中天气最晴朗的一天。我们的模型还对没有监测站的地点的空气污染物浓度进行了插值,并提供了空气停滞下的空气污染浓度图。研究结果可用于确定空气污染物容易积聚的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmetrics
Environmetrics 环境科学-环境科学
CiteScore
2.90
自引率
17.60%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences. The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.
期刊最新文献
Issue Information Bias correction of daily precipitation from climate models, using the Q-GAM method Issue Information A hierarchical constrained density regression model for predicting cluster-level dose-response Under the mantra: ‘Make use of colorblind friendly graphs’
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1