Analysis of terahertz double dielectric structure patch antenna using nitride semiconductors

IF 0.5 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Electronics and Communications in Japan Pub Date : 2023-02-11 DOI:10.1002/ecj.12390
Shin Miura, Kenta Kurahashi, Keishiro Goshima, Masanori Nagase
{"title":"Analysis of terahertz double dielectric structure patch antenna using nitride semiconductors","authors":"Shin Miura,&nbsp;Kenta Kurahashi,&nbsp;Keishiro Goshima,&nbsp;Masanori Nagase","doi":"10.1002/ecj.12390","DOIUrl":null,"url":null,"abstract":"<p>Recently, gallium arsenide (GaAs)-based resonant tunneling diode (RTD) oscillators and indium phosphorus (InP)-based Schottky barrier diode (SBD) receivers have been studied in the terahertz (THz) band. The THz devices for practical use should operate at room temperature, be small in size, and have high output power. Therefore, this study was focused on gallium nitride (GaN), which possesses excellent material properties, such as wide bandgap characteristics and heteroepitaxy on Si substrates. The GaN-based oscillators and receivers are expected to be compact, operate at room-temperature, and act as a high-power device for the THz-band devices. However, GaN has crystal defects, which can cause instability in device operations. A double dielectric structure patch antenna composed of Silicon Nitride (SiN) and Benzo Cyclo Butene (BCB) with different dielectric constants was proposed to realize a GaN-based THz transmitter and receiver. The antenna characteristics were investigated using the Finite Difference Time Domain (FDTD) method. The results showed that the SiN has little effect on the radiation, whereas the BCB is strongly responsible for the radiation. Comparing the absolute gain between the double dielectric structure and the conventional structure using the SiN, it was confirmed that the double dielectric structure can improve the absolute gain.</p>","PeriodicalId":50539,"journal":{"name":"Electronics and Communications in Japan","volume":"106 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics and Communications in Japan","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecj.12390","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, gallium arsenide (GaAs)-based resonant tunneling diode (RTD) oscillators and indium phosphorus (InP)-based Schottky barrier diode (SBD) receivers have been studied in the terahertz (THz) band. The THz devices for practical use should operate at room temperature, be small in size, and have high output power. Therefore, this study was focused on gallium nitride (GaN), which possesses excellent material properties, such as wide bandgap characteristics and heteroepitaxy on Si substrates. The GaN-based oscillators and receivers are expected to be compact, operate at room-temperature, and act as a high-power device for the THz-band devices. However, GaN has crystal defects, which can cause instability in device operations. A double dielectric structure patch antenna composed of Silicon Nitride (SiN) and Benzo Cyclo Butene (BCB) with different dielectric constants was proposed to realize a GaN-based THz transmitter and receiver. The antenna characteristics were investigated using the Finite Difference Time Domain (FDTD) method. The results showed that the SiN has little effect on the radiation, whereas the BCB is strongly responsible for the radiation. Comparing the absolute gain between the double dielectric structure and the conventional structure using the SiN, it was confirmed that the double dielectric structure can improve the absolute gain.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氮化物半导体太赫兹双介质结构贴片天线的分析
近年来,基于砷化镓(GaAs)的谐振隧穿二极管(RTD)振荡器和基于铟磷(InP)的肖特基势垒二极管(SBD)接收器已经在太赫兹(THz)波段进行了研究。实际使用的太赫兹器件应在室温下工作,体积小,并具有高输出功率。因此,本研究的重点是氮化镓(GaN),它具有优异的材料性能,如宽带隙特性和在Si衬底上的异质外延。基于GaN的振荡器和接收器预计是紧凑的,在室温下工作,并作为太赫兹波段器件的高功率器件。然而,GaN具有晶体缺陷,这可能导致器件操作的不稳定性。为了实现GaN基太赫兹发射机和接收机,提出了一种由不同介电常数的氮化硅(SiN)和苯并环丁烯(BCB)组成的双介质结构贴片天线。采用时域有限差分法对天线特性进行了研究。结果表明,SiN对辐射的影响很小,而BCB对辐射的作用很大。将双介电结构与使用SiN的传统结构之间的绝对增益进行比较,证实了双电介质结构可以提高绝对增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electronics and Communications in Japan
Electronics and Communications in Japan 工程技术-工程:电子与电气
CiteScore
0.60
自引率
0.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Electronics and Communications in Japan (ECJ) publishes papers translated from the Transactions of the Institute of Electrical Engineers of Japan 12 times per year as an official journal of the Institute of Electrical Engineers of Japan (IEEJ). ECJ aims to provide world-class researches in highly diverse and sophisticated areas of Electrical and Electronic Engineering as well as in related disciplines with emphasis on electronic circuits, controls and communications. ECJ focuses on the following fields: - Electronic theory and circuits, - Control theory, - Communications, - Cryptography, - Biomedical fields, - Surveillance, - Robotics, - Sensors and actuators, - Micromachines, - Image analysis and signal analysis, - New materials. For works related to the science, technology, and applications of electric power, please refer to the sister journal Electrical Engineering in Japan (EEJ).
期刊最新文献
Issue Information Event-Triggered Robust Control of Robot Manipulators A Hardware Chaotic Neural Network With Gap Junction Models Effects of Controlling Assist Robots to Follow Lumbar Load on Muscle Fatigue Absolute Train Localization Based on the Identification of Surrounding Structures Using 1D LiDAR Sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1