Grant Hutchings, Bruno Sansó, James Gattiker, Devin Francom, Donatella Pasqualini
{"title":"Comparing emulation methods for a high-resolution storm surge model","authors":"Grant Hutchings, Bruno Sansó, James Gattiker, Devin Francom, Donatella Pasqualini","doi":"10.1002/env.2796","DOIUrl":null,"url":null,"abstract":"<p>Realistic simulations of complex systems are fundamental for climate and environmental studies. Large computer systems are often not sufficient to run sophisticated computational models for large numbers of different input settings. Statistical surrogate models, or emulators, are key tools enabling fast exploration of the simulator input space. Gaussian processes have become standard for computer simulator emulation. However, they require careful implementation to scale appropriately, motivating alternative methods more recently introduced. We present a comparison study of surrogates of the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) simulator—the simulator of choice for government agencies—using four emulation approaches: BASS; BART; SEPIA; and RobustGaSP. SEPIA and RobustGaSP use Gaussian processes, BASS implements adaptive splines, and BART is based on ensembles of regression trees. We describe the four models and compare them in terms of computation time and predictive metrics. These surrogates use proven and distinct methodologies, are available through accessible software, and quantify prediction uncertainty. Our data cover millions of response values. We find that SEPIA and RobustGaSP provide exceptional predictive power, but cannot scale to emulate experiments as large as the one considered in this paper as effectively as BASS and BART.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"34 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2796","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2796","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 4
Abstract
Realistic simulations of complex systems are fundamental for climate and environmental studies. Large computer systems are often not sufficient to run sophisticated computational models for large numbers of different input settings. Statistical surrogate models, or emulators, are key tools enabling fast exploration of the simulator input space. Gaussian processes have become standard for computer simulator emulation. However, they require careful implementation to scale appropriately, motivating alternative methods more recently introduced. We present a comparison study of surrogates of the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) simulator—the simulator of choice for government agencies—using four emulation approaches: BASS; BART; SEPIA; and RobustGaSP. SEPIA and RobustGaSP use Gaussian processes, BASS implements adaptive splines, and BART is based on ensembles of regression trees. We describe the four models and compare them in terms of computation time and predictive metrics. These surrogates use proven and distinct methodologies, are available through accessible software, and quantify prediction uncertainty. Our data cover millions of response values. We find that SEPIA and RobustGaSP provide exceptional predictive power, but cannot scale to emulate experiments as large as the one considered in this paper as effectively as BASS and BART.
期刊介绍:
Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences.
The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.