{"title":"Approximation of Bayesian Hawkes process with inlabru","authors":"Francesco Serafini, Finn Lindgren, Mark Naylor","doi":"10.1002/env.2798","DOIUrl":null,"url":null,"abstract":"<p>Hawkes process are very popular mathematical tools for modeling phenomena exhibiting a <i>self-exciting</i> or <i>self-correcting</i> behavior. Typical examples are earthquakes occurrence, wild-fires, drought, capture-recapture, crime violence, trade exchange, and social network activity. The widespread use of Hawkes process in different fields calls for fast, reproducible, reliable, easy-to-code techniques to implement such models. We offer a technique to perform approximate Bayesian inference of Hawkes process parameters based on the use of the R-package <span>inlabru</span> . The <span>inlabru</span> R-package, in turn, relies on the INLA methodology to approximate the posterior of the parameters. Our Hawkes process approximation is based on a decomposition of the log-likelihood in three parts, which are linearly approximated separately. The linear approximation is performed with respect to the mode of the parameters' posterior distribution, which is determined with an iterative gradient-based method. The approximation of the posterior parameters is therefore deterministic, ensuring full reproducibility of the results. The proposed technique only requires the user to provide the functions to calculate the different parts of the decomposed likelihood, which are internally linearly approximated by the R-package <span>inlabru</span> . We provide a comparison with the <span>bayesianETAS</span> R-package which is based on an MCMC method. The two techniques provide similar results but our approach requires two to ten times less computational time to converge, depending on the amount of data.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"34 5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2798","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2798","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Hawkes process are very popular mathematical tools for modeling phenomena exhibiting a self-exciting or self-correcting behavior. Typical examples are earthquakes occurrence, wild-fires, drought, capture-recapture, crime violence, trade exchange, and social network activity. The widespread use of Hawkes process in different fields calls for fast, reproducible, reliable, easy-to-code techniques to implement such models. We offer a technique to perform approximate Bayesian inference of Hawkes process parameters based on the use of the R-package inlabru . The inlabru R-package, in turn, relies on the INLA methodology to approximate the posterior of the parameters. Our Hawkes process approximation is based on a decomposition of the log-likelihood in three parts, which are linearly approximated separately. The linear approximation is performed with respect to the mode of the parameters' posterior distribution, which is determined with an iterative gradient-based method. The approximation of the posterior parameters is therefore deterministic, ensuring full reproducibility of the results. The proposed technique only requires the user to provide the functions to calculate the different parts of the decomposed likelihood, which are internally linearly approximated by the R-package inlabru . We provide a comparison with the bayesianETAS R-package which is based on an MCMC method. The two techniques provide similar results but our approach requires two to ten times less computational time to converge, depending on the amount of data.
期刊介绍:
Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences.
The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.