Quorum sensing-associated bacterial phenazines are potential ligands of human α1-acid glycoprotein

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-05-15 DOI:10.1002/jmr.3027
Ferenc Zsila
{"title":"Quorum sensing-associated bacterial phenazines are potential ligands of human α1-acid glycoprotein","authors":"Ferenc Zsila","doi":"10.1002/jmr.3027","DOIUrl":null,"url":null,"abstract":"<p>α<sub>1</sub>-Acid glycoprotein (AGP) is a prominent acute phase component of blood plasma and extravascular fluids. As a member of the immunocalins, AGP exerts protective effects against Gram-negative bacterial infections but the underlying molecular mechanisms still need to be elucidated. Notably, the chemical structures of phenothiazine, phenoxazine and acridine type ligands of AGP are similar to those of phenazine compounds excreted by the opportunistic human pathogen <i>Pseudomonas aeruginosa</i> and related bacterial species. These molecules, like pyocyanin, act as quorum sensing-associated virulence factors and are important contributors to bacterial biofilm formation and host colonisation. Molecular docking simulations revealed that these agents fit into the multi-lobed cavity of AGP. The binding site is decorated by several aromatic residues which seem to be essential for molecular recognition of the ligands allowing multifold π–π and CH–π interactions. The estimated affinity constants (~10<sup>5</sup> M<sup>−1</sup>) predict that these secondary metabolites could be trapped inside the β-barrel of AGP which in turn could reduce their cytotoxic effects and disrupt the microbial QS network, facilitating the eradication of bacterial infections.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmr.3027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

α1-Acid glycoprotein (AGP) is a prominent acute phase component of blood plasma and extravascular fluids. As a member of the immunocalins, AGP exerts protective effects against Gram-negative bacterial infections but the underlying molecular mechanisms still need to be elucidated. Notably, the chemical structures of phenothiazine, phenoxazine and acridine type ligands of AGP are similar to those of phenazine compounds excreted by the opportunistic human pathogen Pseudomonas aeruginosa and related bacterial species. These molecules, like pyocyanin, act as quorum sensing-associated virulence factors and are important contributors to bacterial biofilm formation and host colonisation. Molecular docking simulations revealed that these agents fit into the multi-lobed cavity of AGP. The binding site is decorated by several aromatic residues which seem to be essential for molecular recognition of the ligands allowing multifold π–π and CH–π interactions. The estimated affinity constants (~105 M−1) predict that these secondary metabolites could be trapped inside the β-barrel of AGP which in turn could reduce their cytotoxic effects and disrupt the microbial QS network, facilitating the eradication of bacterial infections.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
群体感应相关细菌吩嗪是人类α1-酸性糖蛋白的潜在配体
α1-酸性糖蛋白(AGP)是血浆和血管外液中一种重要的急性期成分。AGP作为免疫细胞中的一员,对革兰氏阴性细菌感染具有保护作用,但其潜在的分子机制仍有待阐明。值得注意的是,AGP的吩噻嗪、吩恶嗪和吖啶型配体的化学结构与机会性人类病原体铜绿假单胞菌和相关细菌分泌的吩嗪化合物的化学结构相似。这些分子,如绿脓蛋白,作为群体感应相关毒力因子,是细菌生物膜形成和宿主定植的重要因素。分子对接模拟显示,这些试剂适合AGP的多叶腔。结合位点由几个芳香残基修饰,这些残基似乎对配体的分子识别至关重要,从而允许多重π–π和CH–π相互作用。估计的亲和常数(~105 M−1)预测,这些次级代谢产物可能被捕获在AGP的β-桶内,这反过来又可以降低其细胞毒性作用,破坏微生物QS网络,促进根除细菌感染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1