Unified throughout-pore microstructure enables ultrahigh separator porosity for robust high-flux lithium batteries

Electron Pub Date : 2023-08-07 DOI:10.1002/elt2.1
Dongjiang Chen, Yuanpeng Liu, Chao Feng, Yuhui He, Shengyu Zhou, Botao Yuan, Yunfa Dong, Haodong Xie, Guangfeng Zeng, Jiecai Han, Weidong He
{"title":"Unified throughout-pore microstructure enables ultrahigh separator porosity for robust high-flux lithium batteries","authors":"Dongjiang Chen,&nbsp;Yuanpeng Liu,&nbsp;Chao Feng,&nbsp;Yuhui He,&nbsp;Shengyu Zhou,&nbsp;Botao Yuan,&nbsp;Yunfa Dong,&nbsp;Haodong Xie,&nbsp;Guangfeng Zeng,&nbsp;Jiecai Han,&nbsp;Weidong He","doi":"10.1002/elt2.1","DOIUrl":null,"url":null,"abstract":"<p>With small thickness, commercial polyolefin separators own low porosity to ensure sufficient thermomechanical properties, resulting in tortuous and enlarged Li<sup>+</sup> diffusion pathways that induce large overpotentials and detrimental dendrite growth. As a dilemma, the exploration of highly porous separators has been challenged by their large thickness, impairing the applicability of such pursuits. Herein, an ultraporous architecture is designed to shorten Li<sup>+</sup> transfer pathways by impregnating electrolyte-affinitive poly (vinylidene fluoride-co-hexafluoropropylene) into ultralight ∼3 μm 3D-polytetrafluoroethylene scaffold (abbreviated as UP3D). The UP3D separator with a porosity of 74% gives rise to 70% enhancement in Li<sup>+</sup> transference and 77% reduction in Li<sup>+</sup> transfer resistance (2.67 mΩ mm<sup>−1</sup>) and thus enables an ultrahigh Li<sup>+</sup> flux of 22.7 mA cm<sup>−2</sup>, effectively alleviating Li<sup>+</sup> concentration gradient across the separator. With the separator, the LiFePO<sub>4</sub> half cell delivers a capacity of 118 mAh g<sup>−1</sup> with an unparalleled capacity retention of 90% after 1000 cycles at 2 C, and a graphite || LiNi<sub>0.6</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>O<sub>2</sub> pouch full cell delivers an areal energy density of 6.8 mWh cm<sup>−2</sup> at 8.848 mA (1.4 mA cm<sup>−2</sup>) with a high cathode loading of 134.9 mg. Such results, together with the scalable production of the separator, reflect its promising potential in high-flux battery applications of separators that require both ultrahigh porosity and reliability.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.1","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elt2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With small thickness, commercial polyolefin separators own low porosity to ensure sufficient thermomechanical properties, resulting in tortuous and enlarged Li+ diffusion pathways that induce large overpotentials and detrimental dendrite growth. As a dilemma, the exploration of highly porous separators has been challenged by their large thickness, impairing the applicability of such pursuits. Herein, an ultraporous architecture is designed to shorten Li+ transfer pathways by impregnating electrolyte-affinitive poly (vinylidene fluoride-co-hexafluoropropylene) into ultralight ∼3 μm 3D-polytetrafluoroethylene scaffold (abbreviated as UP3D). The UP3D separator with a porosity of 74% gives rise to 70% enhancement in Li+ transference and 77% reduction in Li+ transfer resistance (2.67 mΩ mm−1) and thus enables an ultrahigh Li+ flux of 22.7 mA cm−2, effectively alleviating Li+ concentration gradient across the separator. With the separator, the LiFePO4 half cell delivers a capacity of 118 mAh g−1 with an unparalleled capacity retention of 90% after 1000 cycles at 2 C, and a graphite || LiNi0.6Co0.2Mn0.2O2 pouch full cell delivers an areal energy density of 6.8 mWh cm−2 at 8.848 mA (1.4 mA cm−2) with a high cathode loading of 134.9 mg. Such results, together with the scalable production of the separator, reflect its promising potential in high-flux battery applications of separators that require both ultrahigh porosity and reliability.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
统一的全孔微观结构使隔膜具有超高孔隙率,可用于坚固的高通量锂电池
由于厚度较小,商业聚烯烃隔膜具有较低的孔隙率,以确保足够的热机械性能,从而导致曲折和扩大的Li+扩散路径,从而导致大的过电位和有害的枝晶生长。作为一种困境,高度多孔隔膜的探索因其大厚度而受到挑战,削弱了此类追求的适用性。本文设计了一种超多孔结构,通过将电解质亲和性聚(偏二氟乙烯-共-六氟丙烯)浸渍到超轻-3μm的3D聚四氟乙烯支架(缩写为UP3D)中来缩短Li+转移途径。孔隙率为74%的UP3D隔膜使Li+转移增强了70%,Li+转移电阻降低了77%(2.67 mΩmm−1),从而实现了22.7 mA cm−2的超高Li+通量,有效地缓解了隔膜上的Li+浓度梯度。使用隔膜,LiFePO4半电池在2 C下1000次循环后可提供118 mAh g−1的容量,无与伦比的容量保持率为90%,石墨|| LiNi0.6Co0.2Mn0.2O2袋状全电池在8.848 mA(1.4 mA cm−2)下可提供6.8 mWh cm−2的面能密度,阴极负载高达134.9 mg,该隔膜的可扩展生产反映了其在需要超高孔隙率和可靠性的隔膜的高通量电池应用中的良好潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Cover Image, Volume 2, Number 4, November 2024 Cover Image, Volume 2, Number 4, November 2024 Design of long-wavelength infrared InAs/InAsSb type-II superlattice avalanche photodetector with stepped grading layer Recent progress on heteroepitaxial growth of single crystal diamond films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1