{"title":"Optical Non-Reciprocity in Coupled Resonators by Detailed Balance","authors":"Yi-Xuan Yao, Qing Ai","doi":"10.1002/andp.202300135","DOIUrl":null,"url":null,"abstract":"<p>Inspired by the photosynthetic energy transfer process, a method to realize non-reciprocal optical transmission in an array of coupled resonators is theoretically proposed. The optical non-reciprocity of the coupled resonators arises from the frequency gradient between adjacent cavities and the interaction with the environment, which is similar to photosynthetic energy transfer. An increase in the frequency gradient or the number of the cavities can lead to better non-reciprocity. However, although a higher environment temperature will increase the total photon number in the coupled cavities, non-reciprocity will be weakened. All these findings can be well described by the detailed balance. The similarity between the noise-induced optical non-reciprocity and exciton energy transfer in natural photosynthesis is revealed by the discovery.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"535 10","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202300135","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Inspired by the photosynthetic energy transfer process, a method to realize non-reciprocal optical transmission in an array of coupled resonators is theoretically proposed. The optical non-reciprocity of the coupled resonators arises from the frequency gradient between adjacent cavities and the interaction with the environment, which is similar to photosynthetic energy transfer. An increase in the frequency gradient or the number of the cavities can lead to better non-reciprocity. However, although a higher environment temperature will increase the total photon number in the coupled cavities, non-reciprocity will be weakened. All these findings can be well described by the detailed balance. The similarity between the noise-induced optical non-reciprocity and exciton energy transfer in natural photosynthesis is revealed by the discovery.
期刊介绍:
Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.