Augmented reality-based telepresence in a robotic manipulation task: An experimental evaluation

IF 2.5 Q2 ENGINEERING, INDUSTRIAL IET Collaborative Intelligent Manufacturing Pub Date : 2023-10-19 DOI:10.1049/cim2.12085
Thomas A. B. de Boer, Joost C. F. de Winter, Yke Bauke Eisma
{"title":"Augmented reality-based telepresence in a robotic manipulation task: An experimental evaluation","authors":"Thomas A. B. de Boer,&nbsp;Joost C. F. de Winter,&nbsp;Yke Bauke Eisma","doi":"10.1049/cim2.12085","DOIUrl":null,"url":null,"abstract":"<p>A spectrum of control methods in human–robot interaction was investigated, ranging from direct control to telepresence with a virtual representation of the robot arm. A total of 24 participants used a setup that included a Franka Emika Panda robot arm, Varjo XR-3 head-mounted display, and Leap Motion Controller. Participants performed a box-and-block task using the bare hand (A), and under five gesture-controlled robotic operation methods: direct sight (B), sight via video-feedthrough (C), in a 3D telepresence environment with (D) and without (E) virtual representation of the robot arm, and using a 2D video feed (F). The number of grabbing attempts did not differ significantly between conditions, but local operation (B &amp; C) yielded more transferred blocks than teleoperation (D–F). Teleoperation using a 3D presentation was advantageous compared to teleoperation using a 2D video feed, as demonstrated by lower peak forces and smaller range in gripper heights in conditions D and E compared to condition F, a finding supported by analyses of the head movement activity. Finally, the bare hand yielded the best performance and subjective ratings. In summary, teleoperation using a 3D presentation provided a smoother interaction than teleoperation with a 2D video feed. However, direct human interaction remains a benchmark yet to surpass.</p>","PeriodicalId":33286,"journal":{"name":"IET Collaborative Intelligent Manufacturing","volume":"5 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.12085","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Collaborative Intelligent Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cim2.12085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

A spectrum of control methods in human–robot interaction was investigated, ranging from direct control to telepresence with a virtual representation of the robot arm. A total of 24 participants used a setup that included a Franka Emika Panda robot arm, Varjo XR-3 head-mounted display, and Leap Motion Controller. Participants performed a box-and-block task using the bare hand (A), and under five gesture-controlled robotic operation methods: direct sight (B), sight via video-feedthrough (C), in a 3D telepresence environment with (D) and without (E) virtual representation of the robot arm, and using a 2D video feed (F). The number of grabbing attempts did not differ significantly between conditions, but local operation (B & C) yielded more transferred blocks than teleoperation (D–F). Teleoperation using a 3D presentation was advantageous compared to teleoperation using a 2D video feed, as demonstrated by lower peak forces and smaller range in gripper heights in conditions D and E compared to condition F, a finding supported by analyses of the head movement activity. Finally, the bare hand yielded the best performance and subjective ratings. In summary, teleoperation using a 3D presentation provided a smoother interaction than teleoperation with a 2D video feed. However, direct human interaction remains a benchmark yet to surpass.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器人操作任务中基于增强现实的远程呈现:实验评估
研究了人机交互中的一系列控制方法,从直接控制到机器人手臂的虚拟呈现。共有24名参与者使用了包括Franka Emika Panda机械臂、Varjo XR-3头戴式显示器和Leap Motion Controller在内的设置。参与者使用徒手(a)和五种手势控制的机器人操作方法执行框块任务:直接视觉(B)、通过视频馈通进行视觉(C)、在具有(D)和不具有(E)机械臂虚拟表示的3D遥现环境中以及使用2D视频馈通(F)。不同条件下的抓取尝试次数没有显著差异,但本地操作(B&;C)比远程操作(D-F)产生更多的转移块。与使用2D视频馈送的远程操作相比,使用3D演示的远程操作是有利的,如与条件F相比,在条件D和E下较低的峰值力和较小的夹持器高度范围所示,这一发现得到了头部运动活动分析的支持。最后,徒手获得了最好的表现和主观评分。总之,使用3D呈现的远程操作比使用2D视频馈送的远程操作提供了更平滑的交互。然而,人类直接互动仍然是一个有待超越的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Collaborative Intelligent Manufacturing
IET Collaborative Intelligent Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
9.10
自引率
2.40%
发文量
25
审稿时长
20 weeks
期刊介绍: IET Collaborative Intelligent Manufacturing is a Gold Open Access journal that focuses on the development of efficient and adaptive production and distribution systems. It aims to meet the ever-changing market demands by publishing original research on methodologies and techniques for the application of intelligence, data science, and emerging information and communication technologies in various aspects of manufacturing, such as design, modeling, simulation, planning, and optimization of products, processes, production, and assembly. The journal is indexed in COMPENDEX (Elsevier), Directory of Open Access Journals (DOAJ), Emerging Sources Citation Index (Clarivate Analytics), INSPEC (IET), SCOPUS (Elsevier) and Web of Science (Clarivate Analytics).
期刊最新文献
Development of an artificial intelligence model for wire electrical discharge machining of Inconel 625 in biomedical applications Integrated modelling and simulation method of hybrid systems based on X language RETRACTION: A novel method of material demand forecasting for power supply chains in industrial applications A multimodal expert system for the intelligent monitoring and maintenance of transformers enhanced by multimodal language large model fine-tuning and digital twins RETRACTION: Analysis of a building collaborative platform for Industry 4.0 based on Building Information Modelling technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1