{"title":"Soilless remediation of the fine carbonate-rich gold-copper mine tailings","authors":"Ling Xia, Yujing Bi, Xu Cui, Xu Liu, Keqiang Zhou, Shaoxian Song, Jiang Zhu, Hongqiang Li, Yong Hu","doi":"10.1002/clen.202200337","DOIUrl":null,"url":null,"abstract":"<p>Soil remediation with minimum amendments is a good strategy for tailings disposal. Carbonate-rich gold-copper mine tailings occurring alongside the Yangzi River, China, were employed as the objective in this study. They showed the characteristics of fine particles and alkaline pH with high density and low nutrition. The amendments including bacterial fertilizer (BF), polymer, peat, straw, and compound fertilizer (CF) were used for soilless remediation on the tailings. Soil quality index (SQI) involved in tailing properties and growth characteristics of ryegrass was used to optimize the combination of amendments. The results showed that the optimum amendment combination was 0.2% BF + 0.6% CF + 0.2% polymer + 10% peat and 2% straw. Tailing nutrients such as soil organic matter (5.56%), available nitrogen (93.6 mg kg<sup>−1</sup>), available phosphorus (51.7 mg kg<sup>−1</sup>), available potassium (711 mg kg<sup>−1</sup>), and ryegrass exhibited the highest germination rate and biomass level under the optimal improvement conditions. Additional environmental assessments revealed that soilless treatment of the tailings helped to convert Cu, Zn, and As into residual forms. These findings show a good strategy for tailings soil improvement and provide a promising perspective of the soilless remediation for fine carbonate-rich metal tailings.</p>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"51 10","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean-soil Air Water","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/clen.202200337","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Soil remediation with minimum amendments is a good strategy for tailings disposal. Carbonate-rich gold-copper mine tailings occurring alongside the Yangzi River, China, were employed as the objective in this study. They showed the characteristics of fine particles and alkaline pH with high density and low nutrition. The amendments including bacterial fertilizer (BF), polymer, peat, straw, and compound fertilizer (CF) were used for soilless remediation on the tailings. Soil quality index (SQI) involved in tailing properties and growth characteristics of ryegrass was used to optimize the combination of amendments. The results showed that the optimum amendment combination was 0.2% BF + 0.6% CF + 0.2% polymer + 10% peat and 2% straw. Tailing nutrients such as soil organic matter (5.56%), available nitrogen (93.6 mg kg−1), available phosphorus (51.7 mg kg−1), available potassium (711 mg kg−1), and ryegrass exhibited the highest germination rate and biomass level under the optimal improvement conditions. Additional environmental assessments revealed that soilless treatment of the tailings helped to convert Cu, Zn, and As into residual forms. These findings show a good strategy for tailings soil improvement and provide a promising perspective of the soilless remediation for fine carbonate-rich metal tailings.
期刊介绍:
CLEAN covers all aspects of Sustainability and Environmental Safety. The journal focuses on organ/human--environment interactions giving interdisciplinary insights on a broad range of topics including air pollution, waste management, the water cycle, and environmental conservation. With a 2019 Journal Impact Factor of 1.603 (Journal Citation Reports (Clarivate Analytics, 2020), the journal publishes an attractive mixture of peer-reviewed scientific reviews, research papers, and short communications.
Papers dealing with environmental sustainability issues from such fields as agriculture, biological sciences, energy, food sciences, geography, geology, meteorology, nutrition, soil and water sciences, etc., are welcome.