Verifying Methane Inventories and Trends With Atmospheric Methane Data

IF 8.3 Q1 GEOSCIENCES, MULTIDISCIPLINARY AGU Advances Pub Date : 2023-08-09 DOI:10.1029/2023AV000871
John R. Worden, Sudhanshu Pandey, Yuzhong Zhang, Daniel H. Cusworth, Zhen Qu, A. Anthony Bloom, Shuang Ma, Joannes D. Maasakkers, Brendan Byrne, Riley Duren, David Crisp, Deborah Gordon, Daniel J. Jacob
{"title":"Verifying Methane Inventories and Trends With Atmospheric Methane Data","authors":"John R. Worden,&nbsp;Sudhanshu Pandey,&nbsp;Yuzhong Zhang,&nbsp;Daniel H. Cusworth,&nbsp;Zhen Qu,&nbsp;A. Anthony Bloom,&nbsp;Shuang Ma,&nbsp;Joannes D. Maasakkers,&nbsp;Brendan Byrne,&nbsp;Riley Duren,&nbsp;David Crisp,&nbsp;Deborah Gordon,&nbsp;Daniel J. Jacob","doi":"10.1029/2023AV000871","DOIUrl":null,"url":null,"abstract":"<p>The 2015 Paris Climate Agreement and Global Methane Pledge formalized agreement for countries to report and reduce methane emissions to mitigate near-term climate change. Emission inventories generated through surface activity measurements are reported annually or bi-annually, and evaluated periodically through a “Global Stocktake.” Emissions inverted from atmospheric data support evaluation of reported inventories, but their systematic use is stifled by spatially variable biases from prior errors combined with limited sensitivity of observations to emissions (also called smoothing error), as-well-as poorly characterized information content. Here, we demonstrate a Bayesian, optimal estimation (OE) algorithm for evaluating a state-of-the-art inventory (EDGAR v6.0) using satellite-based emissions from 2009 to 2018. The OE algorithm quantifies the information content (uncertainty reduction, sectoral attribution, spatial resolution) of the satellite-based emissions and disentangles the effect of smoothing error when comparing to an inventory. We find robust differences between satellite and EDGAR for total livestock, rice, and coal emissions: 14 ± 9, 12 ± 8, −11 ± 6 Tg CH<sub>4</sub>/yr respectively. EDGAR and satellite agree that livestock emissions are increasing (0.25–1.3 Tg CH<sub>4</sub>/yr/yr), primarily in the Indo-Pakistan region, sub-tropical Africa, and the Southern Brazilian; East Asia rice emissions are also increasing, highlighting the importance of agriculture on the atmospheric methane growth rate. In contrast, low information content for the waste and fossil emission trends confounds comparison between EDGAR and satellite; increased sampling and spatial resolution of satellite observations are therefore needed to evaluate reported changes to emissions in these sectors.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"4 4","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023AV000871","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGU Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023AV000871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

The 2015 Paris Climate Agreement and Global Methane Pledge formalized agreement for countries to report and reduce methane emissions to mitigate near-term climate change. Emission inventories generated through surface activity measurements are reported annually or bi-annually, and evaluated periodically through a “Global Stocktake.” Emissions inverted from atmospheric data support evaluation of reported inventories, but their systematic use is stifled by spatially variable biases from prior errors combined with limited sensitivity of observations to emissions (also called smoothing error), as-well-as poorly characterized information content. Here, we demonstrate a Bayesian, optimal estimation (OE) algorithm for evaluating a state-of-the-art inventory (EDGAR v6.0) using satellite-based emissions from 2009 to 2018. The OE algorithm quantifies the information content (uncertainty reduction, sectoral attribution, spatial resolution) of the satellite-based emissions and disentangles the effect of smoothing error when comparing to an inventory. We find robust differences between satellite and EDGAR for total livestock, rice, and coal emissions: 14 ± 9, 12 ± 8, −11 ± 6 Tg CH4/yr respectively. EDGAR and satellite agree that livestock emissions are increasing (0.25–1.3 Tg CH4/yr/yr), primarily in the Indo-Pakistan region, sub-tropical Africa, and the Southern Brazilian; East Asia rice emissions are also increasing, highlighting the importance of agriculture on the atmospheric methane growth rate. In contrast, low information content for the waste and fossil emission trends confounds comparison between EDGAR and satellite; increased sampling and spatial resolution of satellite observations are therefore needed to evaluate reported changes to emissions in these sectors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用大气甲烷数据验证甲烷清单和趋势
2015年《巴黎气候协定》和《全球甲烷承诺》正式规定了各国报告和减少甲烷排放以缓解近期气候变化的协议。通过地表活动测量产生的排放清单每年或每两年报告一次,并通过“全球盘点”定期评估。从大气数据中反演的排放量支持对报告清单的评估,但是,由于先前误差的空间可变偏差,再加上观测对排放的敏感性有限(也称为平滑误差),以及特征较差的信息内容,它们的系统使用受到了抑制。在这里,我们展示了一种贝叶斯最优估计(OE)算法,用于评估2009年至2018年使用卫星排放的最先进库存(EDGAR v6.0)。OE算法量化了卫星排放的信息内容(不确定性减少、部门归属、空间分辨率),并在与清单相比时消除了平滑误差的影响。我们发现,在牲畜、水稻和煤炭的总排放量方面,卫星和EDGAR之间存在巨大差异:分别为14±9、12±8、−11±6 Tg CH4/yr。EDGAR和卫星公司一致认为,牲畜排放量正在增加(0.25–1.3 Tg CH4/yr/yr),主要发生在印巴地区、亚热带非洲和巴西南部;东亚大米的排放量也在增加,凸显了农业对大气甲烷增长率的重要性。相比之下,废物和化石排放趋势的低信息含量混淆了EDGAR和卫星之间的比较;因此,需要提高卫星观测的采样和空间分辨率,以评估这些部门报告的排放变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
期刊最新文献
Distinct Energy Budgets of Mars and Earth Effects of Mesoscale Eddies on Southern Ocean Biogeochemistry The Petrology and Geochemistry of the 2021 Fagradalsfjall Eruption, Iceland: An Eruption Sourced From Multiple, Compositionally Diverse, Near-Moho Sills Imaging Magma Reservoirs From Space With Altimetry-Derived Gravity Data Magnetospheric Control of Ionospheric TEC Perturbations via Whistler-Mode and ULF Waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1