Constitutive Behavior of Rocks During the Seismic Cycle

IF 8.3 Q1 GEOSCIENCES, MULTIDISCIPLINARY AGU Advances Pub Date : 2023-09-23 DOI:10.1029/2023AV000972
Sylvain Barbot
{"title":"Constitutive Behavior of Rocks During the Seismic Cycle","authors":"Sylvain Barbot","doi":"10.1029/2023AV000972","DOIUrl":null,"url":null,"abstract":"<p>Establishing a constitutive law for fault friction is a crucial objective of earthquake science. However, the complex frictional behavior of natural and synthetic gouges in laboratory experiments eludes explanations. Here, we present a constitutive framework that elucidates the rate, state, and temperature dependence of fault friction under the relevant sliding velocities and temperatures of the brittle lithosphere during seismic cycles. The competition between healing mechanisms, such as viscoelastic collapse, pressure-solution creep, and crack sealing, explains the low-temperature stability transition from steady-state velocity-strengthening to velocity-weakening as a function of slip-rate and temperature. In addition, capturing the transition from cataclastic flow to semi-brittle creep accounts for the stabilization of fault slip at elevated temperatures. We calibrate the model using extensive laboratory data on synthetic albite and granite gouge, and on natural samples from the Alpine Fault and the Mugi Mélange in the Shimanto accretionary complex in Japan. The constitutive model consistently explains the evolving frictional response of fault gouge from room temperature to 600°C for sliding velocities ranging from nanometers to millimeters per second. The frictional response of faults can be uniquely determined by the in situ lithology and the prevailing hydrothermal conditions.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"4 5","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023AV000972","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGU Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023AV000972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Establishing a constitutive law for fault friction is a crucial objective of earthquake science. However, the complex frictional behavior of natural and synthetic gouges in laboratory experiments eludes explanations. Here, we present a constitutive framework that elucidates the rate, state, and temperature dependence of fault friction under the relevant sliding velocities and temperatures of the brittle lithosphere during seismic cycles. The competition between healing mechanisms, such as viscoelastic collapse, pressure-solution creep, and crack sealing, explains the low-temperature stability transition from steady-state velocity-strengthening to velocity-weakening as a function of slip-rate and temperature. In addition, capturing the transition from cataclastic flow to semi-brittle creep accounts for the stabilization of fault slip at elevated temperatures. We calibrate the model using extensive laboratory data on synthetic albite and granite gouge, and on natural samples from the Alpine Fault and the Mugi Mélange in the Shimanto accretionary complex in Japan. The constitutive model consistently explains the evolving frictional response of fault gouge from room temperature to 600°C for sliding velocities ranging from nanometers to millimeters per second. The frictional response of faults can be uniquely determined by the in situ lithology and the prevailing hydrothermal conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
地震周期中岩石的本构行为
建立断层摩擦的本构定律是地震科学的一个重要目标。然而,实验室实验中天然和合成凿泥的复杂摩擦行为无法解释。在这里,我们提出了一个本构框架,阐明了在地震周期中脆性岩石圈的相关滑动速度和温度下,断层摩擦的速率、状态和温度依赖性。粘弹性坍塌、压力溶液蠕变和裂缝封闭等愈合机制之间的竞争解释了从稳态速度增强到速度减弱的低温稳定性转变是滑移率和温度的函数。此外,捕捉从碎裂流到半脆性蠕变的转变是断层滑动在高温下稳定的原因。我们使用合成钠长石和花岗岩泥的大量实验室数据,以及来自日本Shimanto增生杂岩中Alpine断层和Mugi Mélange的天然样本来校准模型。本构模型一致地解释了断层泥从室温到600°C,在纳米到毫米每秒的滑动速度范围内不断变化的摩擦响应。断层的摩擦响应可以由现场岩性和主要的热液条件唯一确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
期刊最新文献
Distinct Energy Budgets of Mars and Earth Effects of Mesoscale Eddies on Southern Ocean Biogeochemistry The Petrology and Geochemistry of the 2021 Fagradalsfjall Eruption, Iceland: An Eruption Sourced From Multiple, Compositionally Diverse, Near-Moho Sills Imaging Magma Reservoirs From Space With Altimetry-Derived Gravity Data Magnetospheric Control of Ionospheric TEC Perturbations via Whistler-Mode and ULF Waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1