Alexis Comber, Christopher Brunsdon, Martin Charlton, Guanpeng Dong, Richard Harris, Binbin Lu, Yihe Lü, Daisuke Murakami, Tomoki Nakaya, Yunqiang Wang, Paul Harris
{"title":"A Route Map for Successful Applications of Geographically Weighted Regression","authors":"Alexis Comber, Christopher Brunsdon, Martin Charlton, Guanpeng Dong, Richard Harris, Binbin Lu, Yihe Lü, Daisuke Murakami, Tomoki Nakaya, Yunqiang Wang, Paul Harris","doi":"10.1111/gean.12316","DOIUrl":null,"url":null,"abstract":"<p>Geographically Weighted Regression (GWR) is increasingly used in spatial analyses of social and environmental data. It allows spatial heterogeneities in processes and relationships to be investigated through a series of local regression models rather than a single global one. Standard GWR assumes that relationships between the response and predictor variables operate at the same spatial scale, which is frequently not the case. To address this, several GWR variants have been proposed. This paper describes a route map to decide whether to use a GWR model or not, and if so which of three core variants to apply: a standard GWR, a mixed GWR or a multiscale GWR (MS-GWR). The route map comprises 3 primary steps that should always be undertaken: (1) a basic linear regression, (2) a MS-GWR, and (3) investigations of the results of these in order to decide whether to use a GWR approach, and if so for determining the appropriate GWR variant. The paper also highlights the importance of investigating a number of secondary issues at global and local scales including collinearity, the influence of outliers, and dependent error terms. Code and data for the case study used to illustrate the route map are provided.</p>","PeriodicalId":12533,"journal":{"name":"Geographical Analysis","volume":"55 1","pages":"155-178"},"PeriodicalIF":3.3000,"publicationDate":"2022-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gean.12316","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geographical Analysis","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gean.12316","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
Geographically Weighted Regression (GWR) is increasingly used in spatial analyses of social and environmental data. It allows spatial heterogeneities in processes and relationships to be investigated through a series of local regression models rather than a single global one. Standard GWR assumes that relationships between the response and predictor variables operate at the same spatial scale, which is frequently not the case. To address this, several GWR variants have been proposed. This paper describes a route map to decide whether to use a GWR model or not, and if so which of three core variants to apply: a standard GWR, a mixed GWR or a multiscale GWR (MS-GWR). The route map comprises 3 primary steps that should always be undertaken: (1) a basic linear regression, (2) a MS-GWR, and (3) investigations of the results of these in order to decide whether to use a GWR approach, and if so for determining the appropriate GWR variant. The paper also highlights the importance of investigating a number of secondary issues at global and local scales including collinearity, the influence of outliers, and dependent error terms. Code and data for the case study used to illustrate the route map are provided.
期刊介绍:
First in its specialty area and one of the most frequently cited publications in geography, Geographical Analysis has, since 1969, presented significant advances in geographical theory, model building, and quantitative methods to geographers and scholars in a wide spectrum of related fields. Traditionally, mathematical and nonmathematical articulations of geographical theory, and statements and discussions of the analytic paradigm are published in the journal. Spatial data analyses and spatial econometrics and statistics are strongly represented.