Seydou Hebié, K. Boniface Kokoh, Karine Servat, Teko W. Napporn
{"title":"Shape-dependent electrocatalytic activity of free gold nanoparticles toward glucose oxidation","authors":"Seydou Hebié, K. Boniface Kokoh, Karine Servat, Teko W. Napporn","doi":"10.1007/s13404-013-0119-4","DOIUrl":null,"url":null,"abstract":"<p>The synthesis of shape and size-controlled free gold nanoparticles (AuNPs) was achieved by wet chemical methods. The UV–vis spectroscopy measurements and transmission electron microscopy characterizations confirmed the fine distribution in size and shape of the AuNPs. The zeta potential measurements permitted the evaluation of the stability of the AuNPs suspension. For the first time, the shape dependence on the electrocatalytic activity of these NPs is thoroughly investigated. The underpotential deposition (UPD) of lead reveals that their crystallographic facets are affected by their shape and growth process. Moreover, the glucose oxidation reaction strongly depends on the shape of AuNPs. Indeed, the gold nanocuboids (GNCs) and the spherical gold nanoparticles (GNSs) are significantly more active than the gold nanorods (GNRs) followed by the polyhedrons (GNPs). The oxidation process occurs at low potential for GNCs whereas the current densities are slightly higher for GNSs electrodes. Most importantly, the control of the shape and structure of nanomaterials is of high technological interest because of the strong correlation between these parameters and their optical, electrical and electrocatalytic properties.</p>","PeriodicalId":55086,"journal":{"name":"Gold Bulletin","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2013-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13404-013-0119-4","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gold Bulletin","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13404-013-0119-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 46
Abstract
The synthesis of shape and size-controlled free gold nanoparticles (AuNPs) was achieved by wet chemical methods. The UV–vis spectroscopy measurements and transmission electron microscopy characterizations confirmed the fine distribution in size and shape of the AuNPs. The zeta potential measurements permitted the evaluation of the stability of the AuNPs suspension. For the first time, the shape dependence on the electrocatalytic activity of these NPs is thoroughly investigated. The underpotential deposition (UPD) of lead reveals that their crystallographic facets are affected by their shape and growth process. Moreover, the glucose oxidation reaction strongly depends on the shape of AuNPs. Indeed, the gold nanocuboids (GNCs) and the spherical gold nanoparticles (GNSs) are significantly more active than the gold nanorods (GNRs) followed by the polyhedrons (GNPs). The oxidation process occurs at low potential for GNCs whereas the current densities are slightly higher for GNSs electrodes. Most importantly, the control of the shape and structure of nanomaterials is of high technological interest because of the strong correlation between these parameters and their optical, electrical and electrocatalytic properties.
期刊介绍:
Gold Bulletin is the premier international peer reviewed journal on the latest science, technology and applications of gold. It includes papers on the latest research advances, state-of-the-art reviews, conference reports, book reviews and highlights of patents and scientific literature. Gold Bulletin does not publish manuscripts covering the snthesis of Gold nanoparticles in the presence of plant extracts or other nature-derived extracts. Gold Bulletin has been published over 40 years as a multidisciplinary journal read by chemists, physicists, engineers, metallurgists, materials scientists, biotechnologists, surface scientists, and nanotechnologists amongst others, both within industry and academia. Gold Bulletin is published in Association with the World Gold Council.