Shape-dependent electrocatalytic activity of free gold nanoparticles toward glucose oxidation

IF 2.2 4区 工程技术 Q2 Chemistry Gold Bulletin Pub Date : 2013-11-26 DOI:10.1007/s13404-013-0119-4
Seydou Hebié, K. Boniface Kokoh, Karine Servat, Teko W. Napporn
{"title":"Shape-dependent electrocatalytic activity of free gold nanoparticles toward glucose oxidation","authors":"Seydou Hebié,&nbsp;K. Boniface Kokoh,&nbsp;Karine Servat,&nbsp;Teko W. Napporn","doi":"10.1007/s13404-013-0119-4","DOIUrl":null,"url":null,"abstract":"<p>The synthesis of shape and size-controlled free gold nanoparticles (AuNPs) was achieved by wet chemical methods. The UV–vis spectroscopy measurements and transmission electron microscopy characterizations confirmed the fine distribution in size and shape of the AuNPs. The zeta potential measurements permitted the evaluation of the stability of the AuNPs suspension. For the first time, the shape dependence on the electrocatalytic activity of these NPs is thoroughly investigated. The underpotential deposition (UPD) of lead reveals that their crystallographic facets are affected by their shape and growth process. Moreover, the glucose oxidation reaction strongly depends on the shape of AuNPs. Indeed, the gold nanocuboids (GNCs) and the spherical gold nanoparticles (GNSs) are significantly more active than the gold nanorods (GNRs) followed by the polyhedrons (GNPs). The oxidation process occurs at low potential for GNCs whereas the current densities are slightly higher for GNSs electrodes. Most importantly, the control of the shape and structure of nanomaterials is of high technological interest because of the strong correlation between these parameters and their optical, electrical and electrocatalytic properties.</p>","PeriodicalId":55086,"journal":{"name":"Gold Bulletin","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2013-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13404-013-0119-4","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gold Bulletin","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13404-013-0119-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 46

Abstract

The synthesis of shape and size-controlled free gold nanoparticles (AuNPs) was achieved by wet chemical methods. The UV–vis spectroscopy measurements and transmission electron microscopy characterizations confirmed the fine distribution in size and shape of the AuNPs. The zeta potential measurements permitted the evaluation of the stability of the AuNPs suspension. For the first time, the shape dependence on the electrocatalytic activity of these NPs is thoroughly investigated. The underpotential deposition (UPD) of lead reveals that their crystallographic facets are affected by their shape and growth process. Moreover, the glucose oxidation reaction strongly depends on the shape of AuNPs. Indeed, the gold nanocuboids (GNCs) and the spherical gold nanoparticles (GNSs) are significantly more active than the gold nanorods (GNRs) followed by the polyhedrons (GNPs). The oxidation process occurs at low potential for GNCs whereas the current densities are slightly higher for GNSs electrodes. Most importantly, the control of the shape and structure of nanomaterials is of high technological interest because of the strong correlation between these parameters and their optical, electrical and electrocatalytic properties.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
形状依赖的游离金纳米颗粒对葡萄糖氧化的电催化活性
采用湿化学方法合成了形状和尺寸可控的游离金纳米颗粒(AuNPs)。紫外-可见光谱测量和透射电镜表征证实了aunp在大小和形状上的精细分布。zeta电位测量允许评估AuNPs悬浮液的稳定性。首次深入研究了NPs的形状对电催化活性的依赖性。铅的欠电位沉积(UPD)表明其晶体形貌受其形状和生长过程的影响。此外,葡萄糖氧化反应强烈依赖于aunp的形状。事实上,金纳米立方体(GNCs)和球形金纳米颗粒(GNSs)的活性明显高于金纳米棒(gnr),其次是多面体(GNPs)。GNCs电极的氧化过程发生在低电位下,而GNSs电极的电流密度略高。最重要的是,纳米材料的形状和结构的控制具有很高的技术价值,因为这些参数与其光学、电学和电催化性能之间存在很强的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Gold Bulletin
Gold Bulletin 工程技术-材料科学:综合
CiteScore
3.30
自引率
4.50%
发文量
0
审稿时长
3 months
期刊介绍: Gold Bulletin is the premier international peer reviewed journal on the latest science, technology and applications of gold. It includes papers on the latest research advances, state-of-the-art reviews, conference reports, book reviews and highlights of patents and scientific literature. Gold Bulletin does not publish manuscripts covering the snthesis of Gold nanoparticles in the presence of plant extracts or other nature-derived extracts. Gold Bulletin has been published over 40 years as a multidisciplinary journal read by chemists, physicists, engineers, metallurgists, materials scientists, biotechnologists, surface scientists, and nanotechnologists amongst others, both within industry and academia. Gold Bulletin is published in Association with the World Gold Council.
期刊最新文献
Efficacy of Au versus Au–Pd nanoparticles towards synthesis of spirooxindoles via multicomponent reaction 18 Karat yellow gold single-tracks manufactured by Laser Powder Bed Fusion (LPBF): 1 064 nm and 515 nm laser comparison Microbial-mediated synthesis of gold nanoparticles—current insights and future vistas Drug release properties of amphoteric HES/p(AETAC-co-IA) hydrogels decorated with gold nanoparticles Excited-state gold catalyzed activation of inert C–Cl bonds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1