{"title":"Guided wave signal-based sensing and classification for small geological structure","authors":"Hongyu Sun, Jiao Song, Shanshan Zhou, Qiang Liu, Xiang Lu, Mingming Qi","doi":"10.1049/sil2.12223","DOIUrl":null,"url":null,"abstract":"<p>Sensing, Computing and Communication Integration (SC2) is widely believed as a new enabling technology. A non-negative tensor sparse factorisation (NTSF) algorithm based on tensor analysis is proposed for sensing and classification of Small Geological Structure in coal mines. Utilising this method, advanced detection of geological anomalies hidden in coal seams was achieved. The morphological properties of geological anomalies in coal seams and the propagation characteristics of guided waves were first thoroughly studied. A three-dimensional (3D) medium geometry model was developed for a complicated coal seam with Goaf, collapse column, scouring zone, and tiny fault based on COMSOL Multiphysics. On this model, the third-order tensors data was constructed. Then, the TUCKER-based NTSF algorithm was employed for feature extraction and classification. To achieve multi-dimensional feature, the two-dimensional data in the form of a matrix is collected, and a multiplicative update method is introduced to update the algorithm iteratively. Finally, the Support Vector Machine (SVM) multi-classifier with Gaussian radial basis kernel function is selected for classification of Small Geological Structure. The experimental results show that the classification accuracy based on the NTSF and SVM is as high as 97.33%, which demonstrates that the proposed algorithm is suitable for Sensing and Classification of Small Geological Structure in coal mines.</p>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"17 7","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/sil2.12223","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/sil2.12223","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Sensing, Computing and Communication Integration (SC2) is widely believed as a new enabling technology. A non-negative tensor sparse factorisation (NTSF) algorithm based on tensor analysis is proposed for sensing and classification of Small Geological Structure in coal mines. Utilising this method, advanced detection of geological anomalies hidden in coal seams was achieved. The morphological properties of geological anomalies in coal seams and the propagation characteristics of guided waves were first thoroughly studied. A three-dimensional (3D) medium geometry model was developed for a complicated coal seam with Goaf, collapse column, scouring zone, and tiny fault based on COMSOL Multiphysics. On this model, the third-order tensors data was constructed. Then, the TUCKER-based NTSF algorithm was employed for feature extraction and classification. To achieve multi-dimensional feature, the two-dimensional data in the form of a matrix is collected, and a multiplicative update method is introduced to update the algorithm iteratively. Finally, the Support Vector Machine (SVM) multi-classifier with Gaussian radial basis kernel function is selected for classification of Small Geological Structure. The experimental results show that the classification accuracy based on the NTSF and SVM is as high as 97.33%, which demonstrates that the proposed algorithm is suitable for Sensing and Classification of Small Geological Structure in coal mines.
期刊介绍:
IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more.
Topics covered by scope include, but are not limited to:
advances in single and multi-dimensional filter design and implementation
linear and nonlinear, fixed and adaptive digital filters and multirate filter banks
statistical signal processing techniques and analysis
classical, parametric and higher order spectral analysis
signal transformation and compression techniques, including time-frequency analysis
system modelling and adaptive identification techniques
machine learning based approaches to signal processing
Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques
theory and application of blind and semi-blind signal separation techniques
signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals
direction-finding and beamforming techniques for audio and electromagnetic signals
analysis techniques for biomedical signals
baseband signal processing techniques for transmission and reception of communication signals
signal processing techniques for data hiding and audio watermarking
sparse signal processing and compressive sensing
Special Issue Call for Papers:
Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf