Guided wave signal-based sensing and classification for small geological structure

IF 1.1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC IET Signal Processing Pub Date : 2023-07-27 DOI:10.1049/sil2.12223
Hongyu Sun, Jiao Song, Shanshan Zhou, Qiang Liu, Xiang Lu, Mingming Qi
{"title":"Guided wave signal-based sensing and classification for small geological structure","authors":"Hongyu Sun,&nbsp;Jiao Song,&nbsp;Shanshan Zhou,&nbsp;Qiang Liu,&nbsp;Xiang Lu,&nbsp;Mingming Qi","doi":"10.1049/sil2.12223","DOIUrl":null,"url":null,"abstract":"<p>Sensing, Computing and Communication Integration (SC2) is widely believed as a new enabling technology. A non-negative tensor sparse factorisation (NTSF) algorithm based on tensor analysis is proposed for sensing and classification of Small Geological Structure in coal mines. Utilising this method, advanced detection of geological anomalies hidden in coal seams was achieved. The morphological properties of geological anomalies in coal seams and the propagation characteristics of guided waves were first thoroughly studied. A three-dimensional (3D) medium geometry model was developed for a complicated coal seam with Goaf, collapse column, scouring zone, and tiny fault based on COMSOL Multiphysics. On this model, the third-order tensors data was constructed. Then, the TUCKER-based NTSF algorithm was employed for feature extraction and classification. To achieve multi-dimensional feature, the two-dimensional data in the form of a matrix is collected, and a multiplicative update method is introduced to update the algorithm iteratively. Finally, the Support Vector Machine (SVM) multi-classifier with Gaussian radial basis kernel function is selected for classification of Small Geological Structure. The experimental results show that the classification accuracy based on the NTSF and SVM is as high as 97.33%, which demonstrates that the proposed algorithm is suitable for Sensing and Classification of Small Geological Structure in coal mines.</p>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"17 7","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/sil2.12223","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/sil2.12223","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Sensing, Computing and Communication Integration (SC2) is widely believed as a new enabling technology. A non-negative tensor sparse factorisation (NTSF) algorithm based on tensor analysis is proposed for sensing and classification of Small Geological Structure in coal mines. Utilising this method, advanced detection of geological anomalies hidden in coal seams was achieved. The morphological properties of geological anomalies in coal seams and the propagation characteristics of guided waves were first thoroughly studied. A three-dimensional (3D) medium geometry model was developed for a complicated coal seam with Goaf, collapse column, scouring zone, and tiny fault based on COMSOL Multiphysics. On this model, the third-order tensors data was constructed. Then, the TUCKER-based NTSF algorithm was employed for feature extraction and classification. To achieve multi-dimensional feature, the two-dimensional data in the form of a matrix is collected, and a multiplicative update method is introduced to update the algorithm iteratively. Finally, the Support Vector Machine (SVM) multi-classifier with Gaussian radial basis kernel function is selected for classification of Small Geological Structure. The experimental results show that the classification accuracy based on the NTSF and SVM is as high as 97.33%, which demonstrates that the proposed algorithm is suitable for Sensing and Classification of Small Geological Structure in coal mines.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于导波信号的小型地质构造遥感与分类
传感、计算和通信集成(SC2)被广泛认为是一种新的使能技术。提出了一种基于张量分析的非负张量稀疏因子分解(NTSF)算法,用于煤矿小地质结构的传感和分类。利用该方法,实现了对煤层地质异常的超前探测。首次深入研究了煤层地质异常的形态特征和导波的传播特征。基于COMSOL Multiphysics,建立了一个具有采空区、陷落柱、冲刷带和微小断层的复杂煤层的三维介质几何模型。在此模型上,构造了三阶张量数据。然后,采用基于TUCKER的NTSF算法进行特征提取和分类。为了实现多维特征,收集矩阵形式的二维数据,并引入乘法更新方法对算法进行迭代更新。最后,选择具有高斯径向基核函数的支持向量机(SVM)多分类器对小型地质结构进行分类。实验结果表明,基于NTSF和SVM的分类精度高达97.33%,表明该算法适用于煤矿小地质结构的遥感分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Signal Processing
IET Signal Processing 工程技术-工程:电子与电气
CiteScore
3.80
自引率
5.90%
发文量
83
审稿时长
9.5 months
期刊介绍: IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more. Topics covered by scope include, but are not limited to: advances in single and multi-dimensional filter design and implementation linear and nonlinear, fixed and adaptive digital filters and multirate filter banks statistical signal processing techniques and analysis classical, parametric and higher order spectral analysis signal transformation and compression techniques, including time-frequency analysis system modelling and adaptive identification techniques machine learning based approaches to signal processing Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques theory and application of blind and semi-blind signal separation techniques signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals direction-finding and beamforming techniques for audio and electromagnetic signals analysis techniques for biomedical signals baseband signal processing techniques for transmission and reception of communication signals signal processing techniques for data hiding and audio watermarking sparse signal processing and compressive sensing Special Issue Call for Papers: Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf
期刊最新文献
Human-Centered UAV–MAV Teaming in Adversarial Scenarios via Target-Aware Intention Prediction and Reinforcement Learning Att-U2Net: Using Attention to Enhance Semantic Representation for Salient Object Detection Deep Reinforcement Learning Explores EH-RIS for Spectrum-Efficient Drone Communication in 6G An Improved Lightweight YOLO Algorithm for Recognition of GPS Interference Signals in Civil Aviation Support Vector Machines Based Mutual Interference Mitigation for Millimeter-Wave Radars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1