High Entropy Oxides Modulate Atomic-Level Interactions for High-Performance Aqueous Zinc-Ion Batteries

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2023-10-24 DOI:10.1002/adma.202301538
Kai Du, Yujie Liu, Yunfei Yang, Fangyan Cui, Jinshu Wang, Mingshan Han, Jingwen Su, Jiajun Wang, Xiaopeng Han, Yuxiang Hu
{"title":"High Entropy Oxides Modulate Atomic-Level Interactions for High-Performance Aqueous Zinc-Ion Batteries","authors":"Kai Du,&nbsp;Yujie Liu,&nbsp;Yunfei Yang,&nbsp;Fangyan Cui,&nbsp;Jinshu Wang,&nbsp;Mingshan Han,&nbsp;Jingwen Su,&nbsp;Jiajun Wang,&nbsp;Xiaopeng Han,&nbsp;Yuxiang Hu","doi":"10.1002/adma.202301538","DOIUrl":null,"url":null,"abstract":"<p>The strong electrostatic interaction between high-charge-density zinc ions (112 C mm<sup>−3</sup>) and the fixed crystallinity of traditional oxide cathodes with delayed charge compensation hinders the development of high-performance aqueous zinc-ion batteries (AZIBs). Herein, to intrinsically promote electron transfer efficiency and improve lattice tolerance, a revolutionary family of high-entropy oxides (HEOs) materials with multipath electron transfer and remarkable structural stability as cathodes for AZIBs is proposed. Benefiting from the unique “cock-tail” effect, the interaction of diverse type metal-atoms in HEOs achieves essentially broadened <i>d</i>-band and lower degeneracy than monometallic oxides, which contribute to convenient electron transfer and one of the best rate-performances (136.2 mAh g<sup>−1</sup> at 10.0 A g<sup>−1</sup>) in AZIBs. In addition, the intense lattice strain field of HEOs is highly tolerant to the electrostatic repulsion of high-charge-density Zn<sup>2+</sup>, leading to the outstanding cycling stability in AZIBs. Moreover, the super selectability of elements in HEOs exhibits significant potential for AZIBs.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"35 51","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202301538","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The strong electrostatic interaction between high-charge-density zinc ions (112 C mm−3) and the fixed crystallinity of traditional oxide cathodes with delayed charge compensation hinders the development of high-performance aqueous zinc-ion batteries (AZIBs). Herein, to intrinsically promote electron transfer efficiency and improve lattice tolerance, a revolutionary family of high-entropy oxides (HEOs) materials with multipath electron transfer and remarkable structural stability as cathodes for AZIBs is proposed. Benefiting from the unique “cock-tail” effect, the interaction of diverse type metal-atoms in HEOs achieves essentially broadened d-band and lower degeneracy than monometallic oxides, which contribute to convenient electron transfer and one of the best rate-performances (136.2 mAh g−1 at 10.0 A g−1) in AZIBs. In addition, the intense lattice strain field of HEOs is highly tolerant to the electrostatic repulsion of high-charge-density Zn2+, leading to the outstanding cycling stability in AZIBs. Moreover, the super selectability of elements in HEOs exhibits significant potential for AZIBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高熵氧化物调节高性能锌离子水电池的原子级相互作用。
高电荷密度锌离子(112 C mm-3)与具有延迟电荷补偿的传统氧化物阴极的固定结晶度之间的强静电相互作用阻碍了高性能水性锌离子电池(AZIB)的发展。在此,为了从本质上提高电子转移效率和提高晶格容限,我们提出了一种具有多路径电子转移和显著结构稳定性的高熵氧化物(HEOs)材料家族,作为AZIB的阴极。得益于独特的“公鸡尾巴”效应,HEOs中不同类型金属原子的相互作用实现了比单金属氧化物更宽的d带和更低的简并性,这有助于方便的电子转移和AZIB中最好的速率性能之一(在10.0 A g-1下为136.2 mAh g-1)。此外,HEOs的强晶格应变场对高电荷密度Zn2+的静电排斥具有高度耐受性,导致AZIB具有优异的循环稳定性。此外,HEOs中元素的超选择性对AZIB表现出显著的潜力。这篇文章受版权保护。保留所有权利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Biopolymer‐Based Flame Retardants and Flame‐Retardant Materials Imine‐Linked 3D Covalent Organic Framework Membrane Featuring Highly Charged Sub‐1 nm Channels for Exceptional Lithium‐Ion Sieving Predicting the Mechanical Properties of Supramolecular Gels Interfacial Water Regulation for Nitrate Electroreduction to Ammonia at Ultralow Overpotentials A Multiresonant Thermally Activated Delayed Fluorescent Dendrimer with Intramolecular Energy Transfer: Application for Efficient Host‐Free Green Solution‐Processed Organic Light‐emitting Diodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1