CXCL10 deficiency limits macrophage infiltration, preserves lung matrix, and enables lung growth in bronchopulmonary dysplasia.

Dharmesh V Hirani, Florian Thielen, Siavash Mansouri, Soula Danopoulos, Christina Vohlen, Pinar Haznedar-Karakaya, Jasmine Mohr, Rebecca Wilke, Jaco Selle, Thomas Grosch, Ivana Mizik, Margarete Odenthal, Cristina M Alvira, Celien Kuiper-Makris, Gloria S Pryhuber, Christian Pallasch, S van Koningsbruggen-Rietschel, Denise Al-Alam, Werner Seeger, Rajkumar Savai, Jörg Dötsch, Miguel A Alejandre Alcazar
{"title":"CXCL10 deficiency limits macrophage infiltration, preserves lung matrix, and enables lung growth in bronchopulmonary dysplasia.","authors":"Dharmesh V Hirani, Florian Thielen, Siavash Mansouri, Soula Danopoulos, Christina Vohlen, Pinar Haznedar-Karakaya, Jasmine Mohr, Rebecca Wilke, Jaco Selle, Thomas Grosch, Ivana Mizik, Margarete Odenthal, Cristina M Alvira, Celien Kuiper-Makris, Gloria S Pryhuber, Christian Pallasch, S van Koningsbruggen-Rietschel, Denise Al-Alam, Werner Seeger, Rajkumar Savai, Jörg Dötsch, Miguel A Alejandre Alcazar","doi":"10.1186/s41232-023-00301-6","DOIUrl":null,"url":null,"abstract":"<p><p>Preterm infants with oxygen supplementation are at high risk for bronchopulmonary dysplasia (BPD), a neonatal chronic lung disease. Inflammation with macrophage activation is central to the pathogenesis of BPD. CXCL10, a chemotactic and pro-inflammatory chemokine, is elevated in the lungs of infants evolving BPD and in hyperoxia-based BPD in mice. Here, we tested if CXCL10 deficiency preserves lung growth after neonatal hyperoxia by preventing macrophage activation. To this end, we exposed Cxcl10 knockout (Cxcl10<sup>-/-</sup>) and wild-type mice to an experimental model of hyperoxia (85% O<sub>2</sub>)-induced neonatal lung injury and subsequent regeneration. In addition, cultured primary human macrophages and murine macrophages (J744A.1) were treated with CXCL10 and/or CXCR3 antagonist. Our transcriptomic analysis identified CXCL10 as a central hub in the inflammatory network of neonatal mouse lungs after hyperoxia. Quantitative histomorphometric analysis revealed that Cxcl10<sup>-/-</sup> mice are in part protected from reduced alveolar. These findings were related to the preserved spatial distribution of elastic fibers, reduced collagen deposition, and protection from macrophage recruitment/infiltration to the lungs in Cxcl10<sup>-/-</sup> mice during acute injury and regeneration. Complimentary, studies with cultured human and murine macrophages showed that hyperoxia induces Cxcl10 expression that in turn triggers M1-like activation and migration of macrophages through CXCR3. Finally, we demonstrated a temporal increase of macrophage-related CXCL10 in the lungs of infants with BPD. In conclusion, our data demonstrate macrophage-derived CXCL10 in experimental and clinical BPD that drives macrophage chemotaxis through CXCR3, causing pro-fibrotic lung remodeling and arrest of alveolarization. Thus, targeting the CXCL10-CXCR3 axis could offer a new therapeutic avenue for BPD.</p>","PeriodicalId":94041,"journal":{"name":"Inflammation and regeneration","volume":"43 1","pages":"52"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10594718/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation and regeneration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41232-023-00301-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Preterm infants with oxygen supplementation are at high risk for bronchopulmonary dysplasia (BPD), a neonatal chronic lung disease. Inflammation with macrophage activation is central to the pathogenesis of BPD. CXCL10, a chemotactic and pro-inflammatory chemokine, is elevated in the lungs of infants evolving BPD and in hyperoxia-based BPD in mice. Here, we tested if CXCL10 deficiency preserves lung growth after neonatal hyperoxia by preventing macrophage activation. To this end, we exposed Cxcl10 knockout (Cxcl10-/-) and wild-type mice to an experimental model of hyperoxia (85% O2)-induced neonatal lung injury and subsequent regeneration. In addition, cultured primary human macrophages and murine macrophages (J744A.1) were treated with CXCL10 and/or CXCR3 antagonist. Our transcriptomic analysis identified CXCL10 as a central hub in the inflammatory network of neonatal mouse lungs after hyperoxia. Quantitative histomorphometric analysis revealed that Cxcl10-/- mice are in part protected from reduced alveolar. These findings were related to the preserved spatial distribution of elastic fibers, reduced collagen deposition, and protection from macrophage recruitment/infiltration to the lungs in Cxcl10-/- mice during acute injury and regeneration. Complimentary, studies with cultured human and murine macrophages showed that hyperoxia induces Cxcl10 expression that in turn triggers M1-like activation and migration of macrophages through CXCR3. Finally, we demonstrated a temporal increase of macrophage-related CXCL10 in the lungs of infants with BPD. In conclusion, our data demonstrate macrophage-derived CXCL10 in experimental and clinical BPD that drives macrophage chemotaxis through CXCR3, causing pro-fibrotic lung remodeling and arrest of alveolarization. Thus, targeting the CXCL10-CXCR3 axis could offer a new therapeutic avenue for BPD.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CXCL10缺乏限制巨噬细胞浸润,保留肺基质,促进支气管肺发育不良患者肺生长。
补充氧气的早产儿患支气管肺发育不良(BPD)的风险很高,这是一种新生儿慢性肺病。巨噬细胞活化的炎症是BPD发病机制的核心。CXCL10是一种趋化性和促炎性趋化因子,在患有BPD的婴儿肺部和小鼠中基于高氧的BPD中升高。在这里,我们测试了CXCL10缺乏是否通过阻止巨噬细胞活化来保护新生儿高氧后的肺部生长。为此,我们将Cxcl10敲除(Cxcl10-/-)和野生型小鼠暴露于高氧(85%O2)诱导的新生儿肺损伤和随后再生的实验模型中。此外,用CXCL10和/或CXCR3拮抗剂处理培养的原代人巨噬细胞和鼠巨噬细胞(J744A.1)。我们的转录组学分析确定CXCL10是高氧后新生小鼠肺部炎症网络的中心枢纽。定量组织形态计量学分析显示,Cxcl10-/-小鼠在一定程度上免受肺泡减少的影响。这些发现与Cxcl10-/-小鼠在急性损伤和再生过程中保留的弹性纤维的空间分布、减少的胶原沉积以及防止巨噬细胞募集/渗透到肺部有关。此外,对培养的人和小鼠巨噬细胞的研究表明,高氧诱导Cxcl10的表达,进而触发巨噬细胞通过CXCR3的M1样激活和迁移。最后,我们证明了患有BPD的婴儿肺部巨噬细胞相关CXCL10的时间增加。总之,我们的数据表明,在实验和临床BPD中,巨噬细胞衍生的CXCL10通过CXCR3驱动巨噬细胞趋化,导致促纤维化肺重塑和肺泡化停滞。因此,靶向CXCL10-CXCR3轴可以为BPD提供一种新的治疗途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.00
自引率
0.00%
发文量
0
期刊最新文献
Multi-organ frailty is enhanced by periodontitis-induced inflammaging. Amelioration of liver fibrosis with autologous macrophages induced by IL-34-based condition. Human PBMC-based humanized mice exhibit myositis features and serve as a drug evaluation model. Ca2+ signaling in vascular smooth muscle and endothelial cells in blood vessel remodeling: a review. Cell fusion dynamics: mechanisms of multinucleation in osteoclasts and macrophages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1