Respiratory aerosols and droplets in the transmission of infectious diseases

IF 45.9 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Reviews of Modern Physics Pub Date : 2023-10-12 DOI:10.1103/revmodphys.95.045001
Mira L. Pöhlker, Christopher Pöhlker, Ovid O. Krüger, Jan-David Förster, Thomas Berkemeier, Wolfgang Elbert, Janine Fröhlich-Nowoisky, Ulrich Pöschl, Gholamhossein Bagheri, Eberhard Bodenschatz, J. Alex Huffman, Simone Scheithauer, Eugene Mikhailov
{"title":"Respiratory aerosols and droplets in the transmission of infectious diseases","authors":"Mira L. Pöhlker, Christopher Pöhlker, Ovid O. Krüger, Jan-David Förster, Thomas Berkemeier, Wolfgang Elbert, Janine Fröhlich-Nowoisky, Ulrich Pöschl, Gholamhossein Bagheri, Eberhard Bodenschatz, J. Alex Huffman, Simone Scheithauer, Eugene Mikhailov","doi":"10.1103/revmodphys.95.045001","DOIUrl":null,"url":null,"abstract":"Knowing the physicochemical properties of exhaled droplets and aerosol particles is a prerequisite for a detailed mechanistic understanding and effective prevention of the airborne transmission of infectious human diseases. This review provides a critical consideration and synthesis of scientific knowledge on the number concentrations, size distributions, composition, mixing state, and related properties of respiratory particles emitted upon breathing, speaking, singing, coughing, and sneezing. A parametrization of respiratory particle size distributions is derived and presented based on five log-normal modes related to different origins in the respiratory tract, which can be used to trace and localize the sources of infectious particles. This approach may support the medical treatment as well as the risk assessment for aerosol and droplet transmission of infectious diseases. It was applied to analyze which respiratory activities may drive the spread of specific pathogens, such as <i>Mycobacterium tuberculosis</i>, influenza viruses, and severe acute respiratory syndrome coronaviruses 2 (SARS-CoV-2). The results confirm the high relevance of vocalization for the transmission of SARS-CoV-2, as well as the usefulness of physical distancing, face masks, room ventilation, and air filtration as preventative measures against coronavirus disease 2019 and other airborne infectious diseases.","PeriodicalId":21172,"journal":{"name":"Reviews of Modern Physics","volume":null,"pages":null},"PeriodicalIF":45.9000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Modern Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/revmodphys.95.045001","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 62

Abstract

Knowing the physicochemical properties of exhaled droplets and aerosol particles is a prerequisite for a detailed mechanistic understanding and effective prevention of the airborne transmission of infectious human diseases. This review provides a critical consideration and synthesis of scientific knowledge on the number concentrations, size distributions, composition, mixing state, and related properties of respiratory particles emitted upon breathing, speaking, singing, coughing, and sneezing. A parametrization of respiratory particle size distributions is derived and presented based on five log-normal modes related to different origins in the respiratory tract, which can be used to trace and localize the sources of infectious particles. This approach may support the medical treatment as well as the risk assessment for aerosol and droplet transmission of infectious diseases. It was applied to analyze which respiratory activities may drive the spread of specific pathogens, such as Mycobacterium tuberculosis, influenza viruses, and severe acute respiratory syndrome coronaviruses 2 (SARS-CoV-2). The results confirm the high relevance of vocalization for the transmission of SARS-CoV-2, as well as the usefulness of physical distancing, face masks, room ventilation, and air filtration as preventative measures against coronavirus disease 2019 and other airborne infectious diseases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
呼吸道气溶胶和飞沫传播传染病
了解飞沫和气溶胶颗粒的物理化学性质是详细了解人类传染病空气传播机理和有效预防的先决条件。本文综述了呼吸、说话、唱歌、咳嗽和打喷嚏时释放的呼吸道颗粒的数量、浓度、大小分布、组成、混合状态和相关特性的科学知识。基于与呼吸道中不同来源相关的五种对数正态模式,推导并提出了呼吸道颗粒大小分布的参数化,可用于追踪和定位感染颗粒的来源。该方法可为传染病的气溶胶和飞沫传播的医学治疗和风险评估提供支持。它被用于分析哪些呼吸活动可能驱动特定病原体的传播,如结核分枝杆菌、流感病毒和严重急性呼吸综合征冠状病毒2 (SARS-CoV-2)。研究结果证实了发声与SARS-CoV-2传播的高度相关性,以及保持身体距离、戴口罩、房间通风和空气过滤作为预防2019冠状病毒病和其他空气传播传染病的有效措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Reviews of Modern Physics
Reviews of Modern Physics 物理-物理:综合
CiteScore
76.20
自引率
0.70%
发文量
30
期刊介绍: Reviews of Modern Physics (RMP) stands as the world's foremost physics review journal and is the most extensively cited publication within the Physical Review collection. Authored by leading international researchers, RMP's comprehensive essays offer exceptional coverage of a topic, providing context and background for contemporary research trends. Since 1929, RMP has served as an unparalleled platform for authoritative review papers across all physics domains. The journal publishes two types of essays: Reviews and Colloquia. Review articles deliver the present state of a given topic, including historical context, a critical synthesis of research progress, and a summary of potential future developments.
期刊最新文献
Colloquium: Inclusions, boundaries, and disorder in scalar active matter FLASH: New intersection of physics, chemistry, biology, and cancer medicine Nobel Lecture: Sub-atomic motions Nobel Lecture: Genesis and applications of attosecond pulse trains Nobel Lecture: The route to attosecond pulses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1