Unpacking task-technology fit to explore the business value of big data analytics

IF 20.1 1区 管理学 Q1 INFORMATION SCIENCE & LIBRARY SCIENCE International Journal of Information Management Pub Date : 2023-04-01 DOI:10.1016/j.ijinfomgt.2022.102619
Givemore Muchenje , Marko Seppänen
{"title":"Unpacking task-technology fit to explore the business value of big data analytics","authors":"Givemore Muchenje ,&nbsp;Marko Seppänen","doi":"10.1016/j.ijinfomgt.2022.102619","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding how the application of big data analytics (BDA) generates business value is a persistent challenge in information systems (IS) research. Improving understanding of how BDA realizes business value requires unpacking theories to study the phenomenon. This study unpacks the task-technology fit (TTF) theory toward generating new and improved insights into the business value of BDA. Extant studies on TTF have mainly focused on traditional IT which is different from digital technologies like BDA that are malleable and dynamic. While TTF has primarily focused on how the technology meets task requirements, this study contends that tasks can also be structured to fit the functionality of technology. This study proposes a 2 × 2 matrix framework to explain how BDA and tasks interact. The framework indicates how the reconfigurability of tasks and the editability of BDA impact the fit between tasks and BDA. Future research should explore how the fit between tasks and BDA changes over time.</p></div>","PeriodicalId":48422,"journal":{"name":"International Journal of Information Management","volume":"69 ","pages":"Article 102619"},"PeriodicalIF":20.1000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Management","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268401222001530","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 9

Abstract

Understanding how the application of big data analytics (BDA) generates business value is a persistent challenge in information systems (IS) research. Improving understanding of how BDA realizes business value requires unpacking theories to study the phenomenon. This study unpacks the task-technology fit (TTF) theory toward generating new and improved insights into the business value of BDA. Extant studies on TTF have mainly focused on traditional IT which is different from digital technologies like BDA that are malleable and dynamic. While TTF has primarily focused on how the technology meets task requirements, this study contends that tasks can also be structured to fit the functionality of technology. This study proposes a 2 × 2 matrix framework to explain how BDA and tasks interact. The framework indicates how the reconfigurability of tasks and the editability of BDA impact the fit between tasks and BDA. Future research should explore how the fit between tasks and BDA changes over time.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开箱任务技术适合探索大数据分析的商业价值
了解大数据分析(BDA)的应用如何产生商业价值是信息系统(is)研究中的一个持续挑战。为了更好地理解BDA是如何实现商业价值的,需要打开理论来研究这一现象。本研究揭示了任务技术匹配(TTF)理论,旨在对BDA的商业价值产生新的和改进的见解。目前对TTF的研究主要集中在传统IT上,这与BDA等具有延展性和动态性的数字技术不同。虽然TTF主要关注技术如何满足任务要求,但本研究认为,任务的结构也可以适应技术的功能。本研究提出了一个2×2矩阵框架来解释BDA和任务是如何相互作用的。该框架指出了任务的可重构性和BDA的可编辑性如何影响任务与BDA之间的匹配。未来的研究应该探索任务和BDA之间的匹配度如何随着时间的推移而变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Information Management
International Journal of Information Management INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
53.10
自引率
6.20%
发文量
111
审稿时长
24 days
期刊介绍: The International Journal of Information Management (IJIM) is a distinguished, international, and peer-reviewed journal dedicated to providing its readers with top-notch analysis and discussions within the evolving field of information management. Key features of the journal include: Comprehensive Coverage: IJIM keeps readers informed with major papers, reports, and reviews. Topical Relevance: The journal remains current and relevant through Viewpoint articles and regular features like Research Notes, Case Studies, and a Reviews section, ensuring readers are updated on contemporary issues. Focus on Quality: IJIM prioritizes high-quality papers that address contemporary issues in information management.
期刊最新文献
Collaborative AI in the workplace: Enhancing organizational performance through resource-based and task-technology fit perspectives Personal data strategies in digital advertising: Can first-party data outshine third-party data? Using the influence of human-as-machine representation for self-improvement products The exploration of users’ perceived value from personalization and virtual conversational agents to enable a smart home assemblage– A mixed method approach Extending the unified theory of acceptance and use of technology for sustainable technologies context
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1