Evaluation of ultrasound sensors for transcranial photoacoustic sensing and imaging

IF 7.1 1区 医学 Q1 ENGINEERING, BIOMEDICAL Photoacoustics Pub Date : 2023-10-01 DOI:10.1016/j.pacs.2023.100556
Thomas Kirchner , Claus Villringer , Jan Laufer
{"title":"Evaluation of ultrasound sensors for transcranial photoacoustic sensing and imaging","authors":"Thomas Kirchner ,&nbsp;Claus Villringer ,&nbsp;Jan Laufer","doi":"10.1016/j.pacs.2023.100556","DOIUrl":null,"url":null,"abstract":"<div><p>Photoacoustic imaging through skull bone causes strong attenuation and distortion of the acoustic wavefront, which diminishes image contrast and resolution. As a result, transcranial photoacoustic measurements in humans have been challenging to demonstrate. In this study, we investigated the acoustic transmission through the human skull to design an ultrasound sensor suitable for transcranial PA imaging and sensing. We measured the frequency dependent losses of human cranial bones <em>ex vivo</em>, compared the performance of a range of piezoelectric and optical ultrasound sensors, and imaged skull phantoms using a PA tomograph based on a planar Fabry–Perot sensor. All transcranial photoacoustic measurements show the typical effects of frequency and thickness dependent attenuation and aberration associated with acoustic propagation through bone. The performance of plano-concave optical resonator ultrasound sensors was found to be highly suitable for transcranial photoacoustic measurements.</p></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"33 ","pages":"Article 100556"},"PeriodicalIF":7.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221359792300109X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Photoacoustic imaging through skull bone causes strong attenuation and distortion of the acoustic wavefront, which diminishes image contrast and resolution. As a result, transcranial photoacoustic measurements in humans have been challenging to demonstrate. In this study, we investigated the acoustic transmission through the human skull to design an ultrasound sensor suitable for transcranial PA imaging and sensing. We measured the frequency dependent losses of human cranial bones ex vivo, compared the performance of a range of piezoelectric and optical ultrasound sensors, and imaged skull phantoms using a PA tomograph based on a planar Fabry–Perot sensor. All transcranial photoacoustic measurements show the typical effects of frequency and thickness dependent attenuation and aberration associated with acoustic propagation through bone. The performance of plano-concave optical resonator ultrasound sensors was found to be highly suitable for transcranial photoacoustic measurements.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超声传感器在经颅光声传感和成像中的应用评价
通过颅骨的光声成像会导致声波前的强烈衰减和失真,从而降低图像的对比度和分辨率。因此,人类的经颅光声测量一直很难证明。在这项研究中,我们研究了通过人类头骨的声学传输,以设计一种适用于经颅PA成像和传感的超声传感器。我们在体外测量了人类颅骨的频率相关损失,比较了一系列压电和光学超声传感器的性能,并使用基于平面Fabry-Perot传感器的PA断层扫描仪对颅骨模型进行了成像。所有经颅光声测量都显示了与通过骨骼的声学传播相关的频率和厚度依赖性衰减和像差的典型影响。平凹光学谐振器超声传感器的性能被发现非常适合于经颅光声测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Photoacoustics
Photoacoustics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍: The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms. Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring. Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed. These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.
期刊最新文献
Optoacoustic lenses for lateral sub-optical resolution elasticity imaging Quantitative pharmacodynamics functional evaluation of Chinese medicine Qizhu formula in mice with dynamic near-infrared photoacoustic imaging Cross-sectional imaging of speed-of-sound distribution using photoacoustic reversal beacons Photoacoustic spectroscopy of layered crystals: An enhancement of the photoacoustic signal and its analysis from the perspective of heat generation Ultrasound-assisted aberration correction of transcranial photoacoustic imaging based on angular spectrum theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1