An enhanced L-lactate biosensor based on nanohybrid of chitosan, iron-nanoparticles and carboxylated multiwalled carbon nanotubes

Kusum Dagar, Vinay Narwal, C.S. Pundir
{"title":"An enhanced L-lactate biosensor based on nanohybrid of chitosan, iron-nanoparticles and carboxylated multiwalled carbon nanotubes","authors":"Kusum Dagar,&nbsp;Vinay Narwal,&nbsp;C.S. Pundir","doi":"10.1016/j.sintl.2023.100245","DOIUrl":null,"url":null,"abstract":"<div><p>An enhanced biosensor was developed for the determination of blood lactate in lacto-acidosis patients. The biosensor employed a nanohybrid composed of chitosan/iron oxide nanoparticles and carboxylated multiwalled carbon nanotubes (CHIT/Fe<sub>3</sub>O<sub>4</sub>NPs/c-MWCNTs), electrodeposited onto an Au electrode, followed by covalent immobilization of L-lactate oxidase (LOx) onto this nano-hybrid. The biosensor (LOx/CHIT/Fe<sub>3</sub>O<sub>4</sub>NPs/c-MWCNTs/AuE) exhibited notable improvements in its analytical characteristics such as a rapid response time (4s), a lower detection limit of 0.15 μM and a wider linear range of 1–3000 μM of L-lactic acid. Additionally, it displayed enhanced reproducibility and an extended shelf life of 100 days. The biosensor was employed to measure the concentration of L-lactate in the plasma of both apparently healthy individuals and lacto-acidosis patients. The results showed that the L-lactate concentrations ranged from 112 ± 1.24 to 183 ± 29.15 μmol/L in apparently healthy individuals, whereas it ranged from 2236 ± 33.29 to 4949 ± 72.39 μmol/L in lacto-acidosis patients, which is significantly higher than in apparently healthy individuals. Thus, the integration of the CHIT/Fe<sub>3</sub>O<sub>4</sub>NPs/c-MWCNTs hybrid film in the biosensor led to the enhanced analytical performance of the biosensor.</p></div>","PeriodicalId":21733,"journal":{"name":"Sensors International","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors International","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666351123000190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An enhanced biosensor was developed for the determination of blood lactate in lacto-acidosis patients. The biosensor employed a nanohybrid composed of chitosan/iron oxide nanoparticles and carboxylated multiwalled carbon nanotubes (CHIT/Fe3O4NPs/c-MWCNTs), electrodeposited onto an Au electrode, followed by covalent immobilization of L-lactate oxidase (LOx) onto this nano-hybrid. The biosensor (LOx/CHIT/Fe3O4NPs/c-MWCNTs/AuE) exhibited notable improvements in its analytical characteristics such as a rapid response time (4s), a lower detection limit of 0.15 μM and a wider linear range of 1–3000 μM of L-lactic acid. Additionally, it displayed enhanced reproducibility and an extended shelf life of 100 days. The biosensor was employed to measure the concentration of L-lactate in the plasma of both apparently healthy individuals and lacto-acidosis patients. The results showed that the L-lactate concentrations ranged from 112 ± 1.24 to 183 ± 29.15 μmol/L in apparently healthy individuals, whereas it ranged from 2236 ± 33.29 to 4949 ± 72.39 μmol/L in lacto-acidosis patients, which is significantly higher than in apparently healthy individuals. Thus, the integration of the CHIT/Fe3O4NPs/c-MWCNTs hybrid film in the biosensor led to the enhanced analytical performance of the biosensor.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于壳聚糖、铁纳米粒子和羧化多壁碳纳米管纳米杂化物的增强型L-乳酸生物传感器
开发了一种用于测定乳酸中毒患者血乳酸的增强型生物传感器。该生物传感器采用了由壳聚糖/氧化铁纳米颗粒和羧化多壁碳纳米管(CHIT/Fe3O4NPs/c-MWCNTs)组成的纳米杂化物,电沉积在Au电极上,然后将L-乳酸氧化酶(LOx)共价固定在该纳米杂化物上。该生物传感器(LOx/CHIT/Fe3O4NPs/c-MWCNTs/AuE)在分析特性上表现出显著的改进,如快速响应时间(4s)、0.15μM的检测下限和1–3000μM的L-乳酸的更宽线性范围。此外,它显示出增强的再现性和延长的100天的保质期。生物传感器用于测量明显健康个体和乳酸中毒患者血浆中L-乳酸盐的浓度。结果表明,在明显健康的个体中,L-乳酸盐的浓度范围为112±1.24至183±29.15μmol/L,而在乳酸中毒患者中,其浓度范围为2236±33.29至4949±72.39μmol/L,显著高于明显健康个体。因此,CHIT/Fe3O4NPs/c-MWCNTs杂化膜在生物传感器中的集成提高了生物传感器的分析性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.40
自引率
0.00%
发文量
0
期刊最新文献
A method to detect enzymatic reactions with field effect transistor Blue luminescent carbon quantum dots derived from diverse banana peels for selective sensing of Fe(III) ions The application of ultrasonic measurement and machine learning technique to identify flow regime in a bubble column reactor A capacitive sensor-based approach for type-2 diabetes detection via bio-impedance analysis of erythrocytes GA-mADAM-IIoT: A new lightweight threats detection in the industrial IoT via genetic algorithm with attention mechanism and LSTM on multivariate time series sensor data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1