Deciphering the antimicrobial, antibiofilm and membrane stabilizing synergism of Mikania scandens (L.) Willd. leaves and stems substantiation through in vitro and in silico studies
{"title":"Deciphering the antimicrobial, antibiofilm and membrane stabilizing synergism of Mikania scandens (L.) Willd. leaves and stems substantiation through in vitro and in silico studies","authors":"Nadia Islam Tumpa , Md. Helal Uddin Chowdhury , Ankhy Alamgir Asma","doi":"10.1016/j.btre.2023.e00797","DOIUrl":null,"url":null,"abstract":"<div><p>Considering the traditional application of <em>Mikania scandens</em> (L.) Willd. against wounds and itching. Leaves (MSL) and stems (MSS) were sequentially extracted using solvents petroleum-ether, carbon-tetrachloride, chloroform, ethyl-acetate and ethanol. Disk-diffusion assay revealed the ethyl acetate MSL and MSS extracts were the prominent against ten bacteria, five carbapenem-resistant bacteria and one fungal strains. Subsequent quantitative antimicrobial analysis specified MSL extractives more potent over MSS with lower 1500 and 3500µg/ml MIC and MBC value in both gram-negative and positive bacteria. These sturdiest ethyl-acetate MSL extractives antimicrobial efficiency also fostered fungicidal activity having lower 100µg/ml MFC. Whereat, almost homologous 160–180 min timing noted liken to standard ciprofloxacin susceptibility in both strains, 75% biofilm inhibition at 2×MIC concentration along with 92±0.2% membrane stabilizing activities over synthetic counterparts prospected in preceding standard extractives. Computational molecular docking of MSL compounds supported this findings therefore forego this valuable synergistic insight as antimicrobial agents to efficiently eradicate human infections.</p></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"38 ","pages":"Article e00797"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215017X23000176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0
Abstract
Considering the traditional application of Mikania scandens (L.) Willd. against wounds and itching. Leaves (MSL) and stems (MSS) were sequentially extracted using solvents petroleum-ether, carbon-tetrachloride, chloroform, ethyl-acetate and ethanol. Disk-diffusion assay revealed the ethyl acetate MSL and MSS extracts were the prominent against ten bacteria, five carbapenem-resistant bacteria and one fungal strains. Subsequent quantitative antimicrobial analysis specified MSL extractives more potent over MSS with lower 1500 and 3500µg/ml MIC and MBC value in both gram-negative and positive bacteria. These sturdiest ethyl-acetate MSL extractives antimicrobial efficiency also fostered fungicidal activity having lower 100µg/ml MFC. Whereat, almost homologous 160–180 min timing noted liken to standard ciprofloxacin susceptibility in both strains, 75% biofilm inhibition at 2×MIC concentration along with 92±0.2% membrane stabilizing activities over synthetic counterparts prospected in preceding standard extractives. Computational molecular docking of MSL compounds supported this findings therefore forego this valuable synergistic insight as antimicrobial agents to efficiently eradicate human infections.
Biotechnology ReportsImmunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
15.80
自引率
0.00%
发文量
79
审稿时长
55 days
期刊介绍:
Biotechnology Reports covers all aspects of Biotechnology particularly those reports that are useful and informative and that will be of value to other researchers in related fields. Biotechnology Reports loves ground breaking science, but will also accept good science that can be of use to the biotechnology community. The journal maintains a high quality peer review where submissions are considered on the basis of scientific validity and technical quality. Acceptable paper types are research articles (short or full communications), methods, mini-reviews, and commentaries in the following areas: Healthcare and pharmaceutical biotechnology Agricultural and food biotechnology Environmental biotechnology Molecular biology, cell and tissue engineering and synthetic biology Industrial biotechnology, biofuels and bioenergy Nanobiotechnology Bioinformatics & systems biology New processes and products in biotechnology, bioprocess engineering.