Efficient secure and verifiable KNN set similarity search over outsourced clouds

IF 3.2 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS High-Confidence Computing Pub Date : 2023-03-01 DOI:10.1016/j.hcc.2022.100100
Xufeng Jiang , Lu Li
{"title":"Efficient secure and verifiable KNN set similarity search over outsourced clouds","authors":"Xufeng Jiang ,&nbsp;Lu Li","doi":"10.1016/j.hcc.2022.100100","DOIUrl":null,"url":null,"abstract":"<div><p>KNN set similarity search is a foundational operation in various realistic applications in cloud computing. However, for security consideration, sensitive data will always be encrypted before uploading to the cloud servers, which makes the search processing a challenging task. In this paper, we focus on the problem of KNN set similarity search over the encrypted datasets. We use Yao’s garbled circuits and secret sharing as underlying tools. To achieve better querying efficiency, we construct a secure R-Tree index structure based on a novel secure grouping protocol, which enables grouping appropriate private values in an oblivious way. Along with several elaborately designed secure arithmetic subroutines, we propose an efficient secure and verifiable KNN set similarity search framework over outsourced clouds. Theoretically, we analyze the complexity of our schemes in detail, and prove the security in the presence of semi-honest adversaries. Finally, we evaluate the performance and feasibility of our proposed methods by extensive experiments.</p></div>","PeriodicalId":100605,"journal":{"name":"High-Confidence Computing","volume":"3 1","pages":"Article 100100"},"PeriodicalIF":3.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Confidence Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667295222000526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

Abstract

KNN set similarity search is a foundational operation in various realistic applications in cloud computing. However, for security consideration, sensitive data will always be encrypted before uploading to the cloud servers, which makes the search processing a challenging task. In this paper, we focus on the problem of KNN set similarity search over the encrypted datasets. We use Yao’s garbled circuits and secret sharing as underlying tools. To achieve better querying efficiency, we construct a secure R-Tree index structure based on a novel secure grouping protocol, which enables grouping appropriate private values in an oblivious way. Along with several elaborately designed secure arithmetic subroutines, we propose an efficient secure and verifiable KNN set similarity search framework over outsourced clouds. Theoretically, we analyze the complexity of our schemes in detail, and prove the security in the presence of semi-honest adversaries. Finally, we evaluate the performance and feasibility of our proposed methods by extensive experiments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
外包云上高效、安全、可验证的KNN集相似性搜索
KNN集相似性搜索是云计算中各种现实应用的基础操作。然而,出于安全考虑,敏感数据在上传到云服务器之前总是会被加密,这使得搜索处理成为一项具有挑战性的任务。本文主要研究加密数据集上的KNN集相似性搜索问题。我们使用姚混乱的电路和秘密分享作为底层工具。为了提高查询效率,我们在一种新的安全分组协议的基础上构建了一种安全的R树索引结构,该结构能够以一种不经意的方式对适当的私有值进行分组。结合几个精心设计的安全算法子程序,我们提出了一个有效的、安全的、可验证的外包云上KNN集相似性搜索框架。从理论上讲,我们详细分析了我们的方案的复杂性,并证明了在存在半诚实对手的情况下的安全性。最后,我们通过大量的实验评估了我们提出的方法的性能和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
期刊最新文献
Identity-based threshold (multi) signature with private accountability for privacy-preserving blockchain Navigating the Digital Twin Network landscape: A survey on architecture, applications, privacy and security Erratum to “An effective digital audio watermarking using a deep convolutional neural network with a search location optimization algorithm for improvement in Robustness and Imperceptibility” [High-Confid. Comput. 3 (2023) 100153] On Building Automation System security SoK: Decentralized Storage Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1