Persona Design Methodology for Work-Commute Travel Behaviour Using Latent Class Cluster Analysis

Sinziana I. Rasca , Karin Markvica , Benjamin Biesinger
{"title":"Persona Design Methodology for Work-Commute Travel Behaviour Using Latent Class Cluster Analysis","authors":"Sinziana I. Rasca ,&nbsp;Karin Markvica ,&nbsp;Benjamin Biesinger","doi":"10.1016/j.multra.2023.100095","DOIUrl":null,"url":null,"abstract":"<div><p>The present study proposes a new methodology that combines quantitative and qualitative data for the generation of representative personas for commuters. The profiles can be used to better understand their travel behaviour and mode choices. The research is based on the example of the region of Agder in Norway and aims to overcome the persona development shortcomings identified by previous researchers. Data from a regional travel behaviour survey (N= 1 849) is analysed using latent class cluster analysis (LCCA), and enriched with qualitative input from 32 interviews, and information provided by an expert panel. This results in a set of 20 representative persona profiles for the case study region. The proposed methodology is easily replicable in other urban networks and has the potential to provide insight into the mobility behaviour and needs of specific groups of people in order to adapt the transport services and encourage climate-friendly behaviour.</p></div>","PeriodicalId":100933,"journal":{"name":"Multimodal Transportation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimodal Transportation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772586323000278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present study proposes a new methodology that combines quantitative and qualitative data for the generation of representative personas for commuters. The profiles can be used to better understand their travel behaviour and mode choices. The research is based on the example of the region of Agder in Norway and aims to overcome the persona development shortcomings identified by previous researchers. Data from a regional travel behaviour survey (N= 1 849) is analysed using latent class cluster analysis (LCCA), and enriched with qualitative input from 32 interviews, and information provided by an expert panel. This results in a set of 20 representative persona profiles for the case study region. The proposed methodology is easily replicable in other urban networks and has the potential to provide insight into the mobility behaviour and needs of specific groups of people in order to adapt the transport services and encourage climate-friendly behaviour.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于潜在类聚类分析的上班通勤行为人格设计方法
本研究提出了一种新的方法,结合定量和定性数据,为通勤者生成具有代表性的人物角色。这些档案可以用来更好地了解他们的旅行行为和模式选择。这项研究以挪威阿格德地区为例,旨在克服之前研究人员发现的角色发展缺陷。区域旅行行为调查的数据(N=1849)使用潜在类别聚类分析(LCCA)进行分析,并通过32次访谈的定性输入和专家小组提供的信息进行丰富。这就为案例研究区域产生了一组20个具有代表性的人物档案。拟议的方法很容易在其他城市网络中推广,有可能深入了解特定人群的流动行为和需求,以调整交通服务并鼓励气候友好行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
期刊最新文献
Relationship between urban traffic crashes and temporal/meteorological conditions: understanding and predicting the effects An assignment-based decomposition approach for the vehicle routing problem with backhauls An adapted savings algorithm for planning heterogeneous logistics with uncrewed aerial vehicles Catastrophic causes of truck drivers’ crashes on Brazilian highways: Mixed method analyses and crash prediction using machine learning Reinforcement learning in transportation research: Frontiers and future directions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1