Advanced synaptic devices and their applications in biomimetic sensory neural system

Chip Pub Date : 2023-03-01 DOI:10.1016/j.chip.2022.100031
Yiqi Sun , Jiean Li , Sheng Li , Yongchang Jiang , Enze Wan , Jiahan Zhang , Yi Shi , Lijia Pan
{"title":"Advanced synaptic devices and their applications in biomimetic sensory neural system","authors":"Yiqi Sun ,&nbsp;Jiean Li ,&nbsp;Sheng Li ,&nbsp;Yongchang Jiang ,&nbsp;Enze Wan ,&nbsp;Jiahan Zhang ,&nbsp;Yi Shi ,&nbsp;Lijia Pan","doi":"10.1016/j.chip.2022.100031","DOIUrl":null,"url":null,"abstract":"<div><p><strong>Human nervous system, which is composed of neuron and synapse networks, is capable of processing information in a plastic, data-parallel, fault-tolerant, and energy-efficient approach. Inspired by the ingenious working mechanism of this miraculous biological data processing system, scientists have been devoting great efforts to artificial neural systems based on synaptic devices in recent decades. The continuous development of bioinspired sensors and synaptic devices in recent years have made it possible that artificial sensory neural systems are capable of capturing and processing stimuli information in real time. The progress of biomimetic sensory neural systems could provide new methods for next-generation humanoid robotics, human-machine interfaces, and other frontier applications. Herein, this review summarized the recent progress of synaptic devices and biomimetic sensory neural systems. Additionally, the opportunities and remaining challenges in the further development of biomimetic sensory neural systems were also outlined</strong>.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"2 1","pages":"Article 100031"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472322000296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Human nervous system, which is composed of neuron and synapse networks, is capable of processing information in a plastic, data-parallel, fault-tolerant, and energy-efficient approach. Inspired by the ingenious working mechanism of this miraculous biological data processing system, scientists have been devoting great efforts to artificial neural systems based on synaptic devices in recent decades. The continuous development of bioinspired sensors and synaptic devices in recent years have made it possible that artificial sensory neural systems are capable of capturing and processing stimuli information in real time. The progress of biomimetic sensory neural systems could provide new methods for next-generation humanoid robotics, human-machine interfaces, and other frontier applications. Herein, this review summarized the recent progress of synaptic devices and biomimetic sensory neural systems. Additionally, the opportunities and remaining challenges in the further development of biomimetic sensory neural systems were also outlined.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
先进的突触装置及其在仿生感觉神经系统中的应用
人类神经系统由神经元和突触网络组成,能够以可塑、数据并行、容错和节能的方式处理信息。受这种神奇的生物数据处理系统巧妙的工作机制的启发,近几十年来,科学家们一直在致力于基于突触设备的人工神经系统。近年来,仿生传感器和突触装置的不断发展使人工感觉神经系统能够实时捕捉和处理刺激信息成为可能。仿生感觉神经系统的进步可能为下一代人形机器人、人机界面和其他前沿应用提供新的方法。本文综述了近年来突触装置和仿生感觉神经系统的研究进展。此外,还概述了仿生感觉神经系统进一步发展的机遇和剩余挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Q-enhancement of piezoelectric micro-oven-controlled MEMS resonators using honeycomb lattice phononic crystals Challenges and recent advances in HfO2-based ferroelectric films for non-volatile memory applications Channel-bias-controlled reconfigurable silicon nanowire transistors via an asymmetric electrode contact strategy Suspended nanomembrane silicon photonic integrated circuits Electrical performance and reliability analysis of vertical gallium nitride Schottky barrier diodes with dual-ion implanted edge termination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1