{"title":"A computationally efficient model for fracture propagation and fluid flow in naturally fractured reservoirs","authors":"Meng Cao, Mukul M. Sharma","doi":"10.1016/j.petrol.2022.111249","DOIUrl":null,"url":null,"abstract":"<div><p><span>There is a need to develop computationally efficient models for oil and gas production from naturally fractured reservoirs<span>. In this paper, we present an efficient, integrated fracturing-production simulator by combining a boundary element method (for fracture propagation) and a general </span></span>Green's function<span> solution (for fluid flow) that eliminates the need to discretize the matrix domain. First, the model is validated against analytical solutions and then compared with a fully numerical model. A comparison of results and computation time shows that our simulator significantly reduces the computation cost without any significant loss in accuracy. The simulator is then applied to investigate the effect of cluster spacing and pumping schedule on production from a hydraulically fractured horizontal well in a naturally fractured reservoir. The results show an optimal cluster spacing that can maximize the contact area between fractures and reservoirs while maintaining the highest production rate. Based on the chosen optimal cluster spacing, we observe that changes in the pumping schedule can have an impact on the production rate due to changes in the created fracture network.</span></p></div>","PeriodicalId":16717,"journal":{"name":"Journal of Petroleum Science and Engineering","volume":"220 ","pages":"Article 111249"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920410522011019","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
There is a need to develop computationally efficient models for oil and gas production from naturally fractured reservoirs. In this paper, we present an efficient, integrated fracturing-production simulator by combining a boundary element method (for fracture propagation) and a general Green's function solution (for fluid flow) that eliminates the need to discretize the matrix domain. First, the model is validated against analytical solutions and then compared with a fully numerical model. A comparison of results and computation time shows that our simulator significantly reduces the computation cost without any significant loss in accuracy. The simulator is then applied to investigate the effect of cluster spacing and pumping schedule on production from a hydraulically fractured horizontal well in a naturally fractured reservoir. The results show an optimal cluster spacing that can maximize the contact area between fractures and reservoirs while maintaining the highest production rate. Based on the chosen optimal cluster spacing, we observe that changes in the pumping schedule can have an impact on the production rate due to changes in the created fracture network.
期刊介绍:
The objective of the Journal of Petroleum Science and Engineering is to bridge the gap between the engineering, the geology and the science of petroleum and natural gas by publishing explicitly written articles intelligible to scientists and engineers working in any field of petroleum engineering, natural gas engineering and petroleum (natural gas) geology. An attempt is made in all issues to balance the subject matter and to appeal to a broad readership.
The Journal of Petroleum Science and Engineering covers the fields of petroleum (and natural gas) exploration, production and flow in its broadest possible sense. Topics include: origin and accumulation of petroleum and natural gas; petroleum geochemistry; reservoir engineering; reservoir simulation; rock mechanics; petrophysics; pore-level phenomena; well logging, testing and evaluation; mathematical modelling; enhanced oil and gas recovery; petroleum geology; compaction/diagenesis; petroleum economics; drilling and drilling fluids; thermodynamics and phase behavior; fluid mechanics; multi-phase flow in porous media; production engineering; formation evaluation; exploration methods; CO2 Sequestration in geological formations/sub-surface; management and development of unconventional resources such as heavy oil and bitumen, tight oil and liquid rich shales.