Dynamic effect of gas initial desorption in coals with different moisture contents and energy-controlling mechanism for outburst prevention of water injection in coal seams

2区 工程技术 Q1 Earth and Planetary Sciences Journal of Petroleum Science and Engineering Pub Date : 2023-01-01 DOI:10.1016/j.petrol.2022.111270
Chaojie Wang , Xiaowei Li , Lutan Liu , Zexiang Tang , Changhang Xu
{"title":"Dynamic effect of gas initial desorption in coals with different moisture contents and energy-controlling mechanism for outburst prevention of water injection in coal seams","authors":"Chaojie Wang ,&nbsp;Xiaowei Li ,&nbsp;Lutan Liu ,&nbsp;Zexiang Tang ,&nbsp;Changhang Xu","doi":"10.1016/j.petrol.2022.111270","DOIUrl":null,"url":null,"abstract":"<div><p><span>In view of the continuous occurrence of coal and gas outbursts (hereafter as ‘outbursts’), and the dynamic behavior and quantitative mechanism of water injection in </span>coal seams<span> preventing outbursts are not still unclear. In the study, the characterization of mechanical action and expansion energy release of gas initial desorption (GID) in coals with different moisture contents is revealed to clarify the influence of moisture on gas dynamic effect in coals. The results show that during the GID of gas-containing coals, the increased moisture content will decrease the pressure and momentum of gas from coals significantly. And the gas pressure reduction rate shows an increasing trend, with the decreasing reduction rate of gas momentum. Therefore, the ability of gas damaging coals with high moisture contents is weakened by reducing the degree of pressure-induced mechanical action on the coal surface and the impact intensity on the cracks in coals. Meanwhile, the gas-released cumulative expansion energy from the coals is significantly reduced, with the decreasing increase rate of the gas energy. Therefrom, the moisture in the coal masses synthetically weakens the dual effects of pressure attribute and expansion effect of gas decreasing the damage ability of gas to coals, which can prevent the further development of outburst preparation process. It is concluded that the correlation between moisture content and the initial expansion energy of released gas is linearly and negatively correlated. For moisture content with the every 1% increase in coal masses of Xuehu Coal Mine, the energy decreases by about 11% on average. Accordingly, the quantitative water injection in coal mining face is carried out to eliminate the local abnormal zone containing gas.</span></p></div>","PeriodicalId":16717,"journal":{"name":"Journal of Petroleum Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920410522011226","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

In view of the continuous occurrence of coal and gas outbursts (hereafter as ‘outbursts’), and the dynamic behavior and quantitative mechanism of water injection in coal seams preventing outbursts are not still unclear. In the study, the characterization of mechanical action and expansion energy release of gas initial desorption (GID) in coals with different moisture contents is revealed to clarify the influence of moisture on gas dynamic effect in coals. The results show that during the GID of gas-containing coals, the increased moisture content will decrease the pressure and momentum of gas from coals significantly. And the gas pressure reduction rate shows an increasing trend, with the decreasing reduction rate of gas momentum. Therefore, the ability of gas damaging coals with high moisture contents is weakened by reducing the degree of pressure-induced mechanical action on the coal surface and the impact intensity on the cracks in coals. Meanwhile, the gas-released cumulative expansion energy from the coals is significantly reduced, with the decreasing increase rate of the gas energy. Therefrom, the moisture in the coal masses synthetically weakens the dual effects of pressure attribute and expansion effect of gas decreasing the damage ability of gas to coals, which can prevent the further development of outburst preparation process. It is concluded that the correlation between moisture content and the initial expansion energy of released gas is linearly and negatively correlated. For moisture content with the every 1% increase in coal masses of Xuehu Coal Mine, the energy decreases by about 11% on average. Accordingly, the quantitative water injection in coal mining face is carried out to eliminate the local abnormal zone containing gas.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同含水量煤中瓦斯初始解吸的动态效应及煤层注水防突能量控制机理
鉴于煤和瓦斯突出(以下简称“突出”)的持续发生,煤层注水预防突出的动态行为和定量机制尚不清楚。本研究揭示了不同含水量煤中气体初始解吸(GID)的力学作用和膨胀能释放特征,以阐明水分对煤中气体动力学效应的影响。结果表明,在含气煤的GID过程中,含水量的增加会显著降低煤中气体的压力和动量。随着气体动量降低率的降低,气体压力降低率呈上升趋势。因此,通过降低压力对煤表面的机械作用程度和对煤中裂纹的冲击强度,削弱了高水分煤的瓦斯破坏能力。同时,随着气体能量增长率的降低,煤中释放的气体累积膨胀能显著降低。因此,煤体中的水分综合削弱了瓦斯压力属性和膨胀效应的双重作用,降低了瓦斯对煤的破坏能力,从而阻止了突出准备过程的进一步发展。结果表明,水分含量与释放气体的初始膨胀能呈线性负相关。薛湖煤矿煤体含水率每增加1%,能量平均下降11%左右。为此,对采煤工作面进行了定量注水,以消除局部含气异常带。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Petroleum Science and Engineering
Journal of Petroleum Science and Engineering 工程技术-地球科学综合
CiteScore
11.30
自引率
0.00%
发文量
1511
审稿时长
13.5 months
期刊介绍: The objective of the Journal of Petroleum Science and Engineering is to bridge the gap between the engineering, the geology and the science of petroleum and natural gas by publishing explicitly written articles intelligible to scientists and engineers working in any field of petroleum engineering, natural gas engineering and petroleum (natural gas) geology. An attempt is made in all issues to balance the subject matter and to appeal to a broad readership. The Journal of Petroleum Science and Engineering covers the fields of petroleum (and natural gas) exploration, production and flow in its broadest possible sense. Topics include: origin and accumulation of petroleum and natural gas; petroleum geochemistry; reservoir engineering; reservoir simulation; rock mechanics; petrophysics; pore-level phenomena; well logging, testing and evaluation; mathematical modelling; enhanced oil and gas recovery; petroleum geology; compaction/diagenesis; petroleum economics; drilling and drilling fluids; thermodynamics and phase behavior; fluid mechanics; multi-phase flow in porous media; production engineering; formation evaluation; exploration methods; CO2 Sequestration in geological formations/sub-surface; management and development of unconventional resources such as heavy oil and bitumen, tight oil and liquid rich shales.
期刊最新文献
Predictive Analytical Model for Hydrate Growth Initiation Point in Multiphase Pipeline System Optimization of the Oxidative Desulphurization of Residual Oil Using Hydrogen Peroxide Terpane Characterization of Crude Oils from Niger Delta, Nigeria: A Geochemical Appraisal Editorial Board Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1