Techno-economic analysis of waste-to-energy with solar hybrid: A case study from Kumasi, Ghana

Kwame Asante , Samuel Gyamfi , Mark Amo-Boateng
{"title":"Techno-economic analysis of waste-to-energy with solar hybrid: A case study from Kumasi, Ghana","authors":"Kwame Asante ,&nbsp;Samuel Gyamfi ,&nbsp;Mark Amo-Boateng","doi":"10.1016/j.solcom.2023.100041","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid growth in global energy demand in recent years has made global leaders think more about sustainability in the energy sector. Waste-to-energy (WTE) and solar energy are emerging areas in the energy sustainability discourse since terrestrial sustainability is of great concern. The study uses economic indices to evaluate the feasibility of WTE and solar plants at Oti landfill in Kumasi, Ghana, with the core objective of sustainable waste management through electricity production. Three scenarios were considered, (i) waste-to-energy plant alone, (ii) solar PV plant alone and (iii) combination of (i) and (ii) – hybrid. The Oti landfill receives a total volume of 891,000 tons per year of solid waste, which can be used to generate 379 GWh of electricity per year and has the potential to generate 85 GWh of electricity per year from solar with the assumption that one-half of the land surface area used waste to electricity and the other one-half is used for solar PV electricity. The study shows that all three scenarios are worth investing in, but the best investment option is the solar PV plant alone with NPV of mGHs 324.79, DPP of 4 years, IRR of 44% and DPI of 2.7. The WTE alone had NPV, IRR, DPI and DPP of mGHs 1122.11, 16%, 0.47 and 15.2 years, respectively. The WTE and solar PV composite had NPV of mGHs1445.9, IRR of 17%, DPI of 2.02 and the project initial cost recovery of 14.2 years.</p></div>","PeriodicalId":101173,"journal":{"name":"Solar Compass","volume":"6 ","pages":"Article 100041"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Compass","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772940023000097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The rapid growth in global energy demand in recent years has made global leaders think more about sustainability in the energy sector. Waste-to-energy (WTE) and solar energy are emerging areas in the energy sustainability discourse since terrestrial sustainability is of great concern. The study uses economic indices to evaluate the feasibility of WTE and solar plants at Oti landfill in Kumasi, Ghana, with the core objective of sustainable waste management through electricity production. Three scenarios were considered, (i) waste-to-energy plant alone, (ii) solar PV plant alone and (iii) combination of (i) and (ii) – hybrid. The Oti landfill receives a total volume of 891,000 tons per year of solid waste, which can be used to generate 379 GWh of electricity per year and has the potential to generate 85 GWh of electricity per year from solar with the assumption that one-half of the land surface area used waste to electricity and the other one-half is used for solar PV electricity. The study shows that all three scenarios are worth investing in, but the best investment option is the solar PV plant alone with NPV of mGHs 324.79, DPP of 4 years, IRR of 44% and DPI of 2.7. The WTE alone had NPV, IRR, DPI and DPP of mGHs 1122.11, 16%, 0.47 and 15.2 years, respectively. The WTE and solar PV composite had NPV of mGHs1445.9, IRR of 17%, DPI of 2.02 and the project initial cost recovery of 14.2 years.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太阳能混合发电垃圾转化能源的技术经济分析——以加纳库马西为例
近年来,全球能源需求的快速增长使全球领导人更多地考虑能源部门的可持续性。废物转化能源(WTE)和太阳能是能源可持续性讨论中的新兴领域,因为陆地可持续性备受关注。该研究使用经济指标来评估加纳库马西奥的斯垃圾填埋场WTE和太阳能发电厂的可行性,其核心目标是通过电力生产实现可持续废物管理。考虑了三种情况,(i)单独的垃圾发电厂,(ii)单独的太阳能光伏发电厂,以及(iii)(i)和(ii)混合的组合。奥的斯垃圾填埋场每年接收的固体废物总量为891000吨,可用于每年发电379 GWh,并有可能通过太阳能每年发电85 GWh,假设一半的地表面积将废物用于发电,另一半用于太阳能光伏发电。研究表明,这三种方案都值得投资,但最好的投资选择是单独的太阳能光伏发电厂,NPV为324.79 mGHs,DPP为4年,IRR为44%,DPI为2.7。单独的WTE的NPV、IRR、DPI和DPP分别为1122.11、16%、0.47和15.2年。WTE和太阳能光伏组合的净现值为mGHs1445.9,内部收益率为17%,DPI为2.02,项目初始成本回收期为14.2年。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental analysis on a solar photovoltaic indoor cooker integrated with an energy storage system: A positive step towards clean cooking transition for Sub-Saharan Africa Comparative analysis of bifacial and monofacial FPV system in the UK Improving optical efficiency of linear Fresnel collectors in the Sahel via position and length adjustment Integral ecology approach to life cycle assessment of solar arrays Study on the comparative performances of the solar stills with two different condensing glass cover shapes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1