An energy-efficient resource allocation strategy in massive MIMO-enabled vehicular edge computing networks

IF 3.2 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS High-Confidence Computing Pub Date : 2023-09-01 DOI:10.1016/j.hcc.2023.100130
Yibin Xie , Lei Shi , Zhenchun Wei , Juan Xu , Yang Zhang
{"title":"An energy-efficient resource allocation strategy in massive MIMO-enabled vehicular edge computing networks","authors":"Yibin Xie ,&nbsp;Lei Shi ,&nbsp;Zhenchun Wei ,&nbsp;Juan Xu ,&nbsp;Yang Zhang","doi":"10.1016/j.hcc.2023.100130","DOIUrl":null,"url":null,"abstract":"<div><p>The vehicular edge computing (VEC) is a new paradigm that allows vehicles to offload computational tasks to base stations (BSs) with edge servers for computing. In general, the VEC paradigm uses the 5G for wireless communications, where the massive multi-input multi-output (MIMO) technique will be used. However, considering in the VEC environment with many vehicles, the energy consumption of BS may be very large. In this paper, we study the energy optimization problem for the massive MIMO-based VEC network. Aiming at reducing the relevant BS energy consumption, we first propose a joint optimization problem of computation resource allocation, beam allocation and vehicle grouping scheme. Since the original problem is hard to be solved directly, we try to split the original problem into two subproblems and then design a heuristic algorithm to solve them. Simulation results show that our proposed algorithm efficiently reduces the BS energy consumption compared to other schemes.</p></div>","PeriodicalId":100605,"journal":{"name":"High-Confidence Computing","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Confidence Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667295223000284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The vehicular edge computing (VEC) is a new paradigm that allows vehicles to offload computational tasks to base stations (BSs) with edge servers for computing. In general, the VEC paradigm uses the 5G for wireless communications, where the massive multi-input multi-output (MIMO) technique will be used. However, considering in the VEC environment with many vehicles, the energy consumption of BS may be very large. In this paper, we study the energy optimization problem for the massive MIMO-based VEC network. Aiming at reducing the relevant BS energy consumption, we first propose a joint optimization problem of computation resource allocation, beam allocation and vehicle grouping scheme. Since the original problem is hard to be solved directly, we try to split the original problem into two subproblems and then design a heuristic algorithm to solve them. Simulation results show that our proposed algorithm efficiently reduces the BS energy consumption compared to other schemes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模MIMO车载边缘计算网络中的节能资源分配策略
车辆边缘计算(VEC)是一种新的范式,允许车辆将计算任务卸载到具有边缘服务器的基站(BS)进行计算。一般来说,VEC范式将5G用于无线通信,其中将使用大规模多输入多输出(MIMO)技术。然而,考虑到在车辆众多的VEC环境中,BS的能耗可能非常大。在本文中,我们研究了大规模基于MIMO的VEC网络的能量优化问题。为了降低相关的基站能耗,我们首先提出了计算资源分配、波束分配和车辆分组方案的联合优化问题。由于原始问题很难直接求解,我们试图将原始问题拆分为两个子问题,然后设计启发式算法来求解它们。仿真结果表明,与其他方案相比,我们提出的算法有效地降低了基站的能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
期刊最新文献
Navigating the Digital Twin Network landscape: A survey on architecture, applications, privacy and security Erratum to “An effective digital audio watermarking using a deep convolutional neural network with a search location optimization algorithm for improvement in Robustness and Imperceptibility” [High-Confid. Comput. 3 (2023) 100153] On Building Automation System security SoK: Decentralized Storage Network Exploring Personalized Internet of Things (PIoT), social connectivity, and Artificial Social Intelligence (ASI): A survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1