Shrishti Naidu , Indrakant K. Singh , Archana Singh
{"title":"Microbial synthesis of magnetic nanoparticles for plant science and agriculture","authors":"Shrishti Naidu , Indrakant K. Singh , Archana Singh","doi":"10.1016/j.plana.2023.100036","DOIUrl":null,"url":null,"abstract":"<div><p>Enormous usage of nanoparticles (NPs) has transformed several societal arenas including health care and agriculture indicating their great demand and production at a high scale. In this context, magnetic nanoparticles (MNPs) have attracted a great deal of attention in the last ten years. Due to the distinctive characteristics and captivating prospective usage demonstrated in a variety of domains, many methods for synthesis of MNPs have lately risen to the forefront. Out of many, microbial synthesis of MNPs is safer and cost-effective. Microorganisms, showing a great deal of biodiversity, provide a range of options to manufacture MNPs. Moreover, MNPs could be produced by microbes in vast quantities and at a low cost. It has also been shown that by employing microbial processes, it is possible to produce both NPs of crystalline pure magnetite as well as magnetite with some of the Fe replaced by Co, Ni, Cr, Mn, Zn, or the rare earths. Additionally, biological methods for producing MNPs are eco-friendly and present chances for industrialization. This review discusses methods for producing MNPs by microbial synthesis and their potential applications in agriculture along with the constraints in their synthesis and usage.</p></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"4 ","pages":"Article 100036"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Nano Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277311112300013X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Enormous usage of nanoparticles (NPs) has transformed several societal arenas including health care and agriculture indicating their great demand and production at a high scale. In this context, magnetic nanoparticles (MNPs) have attracted a great deal of attention in the last ten years. Due to the distinctive characteristics and captivating prospective usage demonstrated in a variety of domains, many methods for synthesis of MNPs have lately risen to the forefront. Out of many, microbial synthesis of MNPs is safer and cost-effective. Microorganisms, showing a great deal of biodiversity, provide a range of options to manufacture MNPs. Moreover, MNPs could be produced by microbes in vast quantities and at a low cost. It has also been shown that by employing microbial processes, it is possible to produce both NPs of crystalline pure magnetite as well as magnetite with some of the Fe replaced by Co, Ni, Cr, Mn, Zn, or the rare earths. Additionally, biological methods for producing MNPs are eco-friendly and present chances for industrialization. This review discusses methods for producing MNPs by microbial synthesis and their potential applications in agriculture along with the constraints in their synthesis and usage.