{"title":"Application of a flexibility estimation method for domestic heat pumps with reduced system information and data","authors":"Christian Baumann , Peter Kepplinger","doi":"10.1016/j.cles.2023.100081","DOIUrl":null,"url":null,"abstract":"<div><p>Activation of heat pump flexibilities is a viable solution to support balancing the grid via Demand Side Management measures and fulfill the need for flexibility options. Aggregators as interface between prosumers, distribution system operators and balance responsible parties face the challenge due to data privacy and technical restrictions to transform prosumer information into aggregated available flexibility to enable trading thereof. Thereby, literature lacks a generic, applicable and widely accepted flexibility estimation method for heat pumps, which incorporates reduced sensor and system information, system- and demand-dependent behaviour. In this paper, we adapt and extend a method from literature, by incorporating domain knowledge to overcome reduced sensor and system information. We apply data of five real-world heat pump systems, distinguish operation modes, estimate power and energy flexibility of each single heat pump system, proof transferability of the method, and aggregate the flexibilities available to showcase a small HP pool as a proof of concept.</p></div>","PeriodicalId":100252,"journal":{"name":"Cleaner Energy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772783123000316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Activation of heat pump flexibilities is a viable solution to support balancing the grid via Demand Side Management measures and fulfill the need for flexibility options. Aggregators as interface between prosumers, distribution system operators and balance responsible parties face the challenge due to data privacy and technical restrictions to transform prosumer information into aggregated available flexibility to enable trading thereof. Thereby, literature lacks a generic, applicable and widely accepted flexibility estimation method for heat pumps, which incorporates reduced sensor and system information, system- and demand-dependent behaviour. In this paper, we adapt and extend a method from literature, by incorporating domain knowledge to overcome reduced sensor and system information. We apply data of five real-world heat pump systems, distinguish operation modes, estimate power and energy flexibility of each single heat pump system, proof transferability of the method, and aggregate the flexibilities available to showcase a small HP pool as a proof of concept.