Graphene based filter design using triangular patch resonator for THz applications

IF 2.9 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Nano Communication Networks Pub Date : 2023-09-22 DOI:10.1016/j.nancom.2023.100477
G. Challa Ram , P. Sambaiah , S. Yuvaraj , M.V. Kartikeyan
{"title":"Graphene based filter design using triangular patch resonator for THz applications","authors":"G. Challa Ram ,&nbsp;P. Sambaiah ,&nbsp;S. Yuvaraj ,&nbsp;M.V. Kartikeyan","doi":"10.1016/j.nancom.2023.100477","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this paper, graphene based tunable bandpass and bandstop filters<span> are designed in terahertz<span> frequency regime<span><span> using a triangular microstrip patch </span>resonator. Initially, a </span></span></span></span>bandpass filter<span><span><span> is designed at an operating frequency of 1.65 THz with a bandwidth of 65 GHz. Further a dual-band bandstop filter is designed with resonance frequencies of 1.25 THz and 2.14 THz. In both designs, the triangular patch is coupled to the transmission line to achieve bandpass and bandstop characteristics. A </span>graphene layer is deposited between the </span>dielectric<span> and the conductor layer to enhance the propagation of plasmonic<span> waves. The simulation results reveal that the designed filters are capable of achieving the desired frequency response. By varying the graphene’s chemical potential, a shift in the transmission response’s resonance frequency is observed. The proposed filters have the potential to be used as key components for future terahertz band communications systems.</span></span></span></p></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"38 ","pages":"Article 100477"},"PeriodicalIF":2.9000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Communication Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878778923000431","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, graphene based tunable bandpass and bandstop filters are designed in terahertz frequency regime using a triangular microstrip patch resonator. Initially, a bandpass filter is designed at an operating frequency of 1.65 THz with a bandwidth of 65 GHz. Further a dual-band bandstop filter is designed with resonance frequencies of 1.25 THz and 2.14 THz. In both designs, the triangular patch is coupled to the transmission line to achieve bandpass and bandstop characteristics. A graphene layer is deposited between the dielectric and the conductor layer to enhance the propagation of plasmonic waves. The simulation results reveal that the designed filters are capable of achieving the desired frequency response. By varying the graphene’s chemical potential, a shift in the transmission response’s resonance frequency is observed. The proposed filters have the potential to be used as key components for future terahertz band communications systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于太赫兹应用的基于石墨烯的三角形贴片谐振器滤波器设计
本文利用三角形微带贴片谐振器,在太赫兹频率范围内设计了基于石墨烯的可调谐带通和带阻滤波器。最初,带通滤波器设计在1.65 THz的工作频率下,带宽为65GHz。此外,设计了具有1.25THz和2.14THz的谐振频率的双频带阻滤波器。在这两种设计中,三角形贴片都耦合到传输线,以实现带通和带阻特性。石墨烯层沉积在电介质和导体层之间,以增强等离子体波的传播。仿真结果表明,所设计的滤波器能够达到期望的频率响应。通过改变石墨烯的化学势,可以观察到传输响应共振频率的变化。所提出的滤波器有可能被用作未来太赫兹波段通信系统的关键部件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Communication Networks
Nano Communication Networks Mathematics-Applied Mathematics
CiteScore
6.00
自引率
6.90%
发文量
14
期刊介绍: The Nano Communication Networks Journal is an international, archival and multi-disciplinary journal providing a publication vehicle for complete coverage of all topics of interest to those involved in all aspects of nanoscale communication and networking. Theoretical research contributions presenting new techniques, concepts or analyses; applied contributions reporting on experiences and experiments; and tutorial and survey manuscripts are published. Nano Communication Networks is a part of the COMNET (Computer Networks) family of journals within Elsevier. The family of journals covers all aspects of networking except nanonetworking, which is the scope of this journal.
期刊最新文献
Estimating channel coefficients for complex topologies in 3D diffusion channel using artificial neural networks Terahertz beam shaping using space-time phase-only coded metasurfaces All-optical AND, NAND, OR, NOR and NOT logic gates using two nested microrings in a racetrack ring resonator End-to-end synaptic molecular communication with astrocytic feedback and generic three-state receptors Design of ternary reversible Feynman and Toffoli gates in ternary quantum-dot cellular automata
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1