{"title":"Circuits and devices for standalone large-scale integration (LSI) chips and Internet of Things (IoT) applications: a review","authors":"Takaya Sugiura , Kenta Yamamura , Yuta Watanabe , Shiun Yamakiri , Nobuhiko Nakano","doi":"10.1016/j.chip.2023.100048","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, Internet of Things (IoT) has become more and more important owing to the rapid expansion of the number of computing devices and data sizes. The evolution of IoT requires low-power and self-operating devices to expand the coverage area of computing resources. The main components of IoT are the large-scale integration (LSI) chips, which take the function of implementing the energy harvesters, control units and applications. They exhibit different physics or phenomena, making it difficult to understand and design the entire system. The current work reviews the various methods for IoT applications by CMOS LSI chips, from the power components by energy harvesting to realistic applications with future outlooks.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"2 3","pages":"Article 100048"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472323000114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In recent years, Internet of Things (IoT) has become more and more important owing to the rapid expansion of the number of computing devices and data sizes. The evolution of IoT requires low-power and self-operating devices to expand the coverage area of computing resources. The main components of IoT are the large-scale integration (LSI) chips, which take the function of implementing the energy harvesters, control units and applications. They exhibit different physics or phenomena, making it difficult to understand and design the entire system. The current work reviews the various methods for IoT applications by CMOS LSI chips, from the power components by energy harvesting to realistic applications with future outlooks.