Yuan Liu , Hongwei Zhou , Peng Xue , Linhan Lin , Hong-Bo Sun
{"title":"Photoswitchable quantum electrodynamics in a hybrid plasmonic quantum emitter","authors":"Yuan Liu , Hongwei Zhou , Peng Xue , Linhan Lin , Hong-Bo Sun","doi":"10.1016/j.chip.2023.100060","DOIUrl":null,"url":null,"abstract":"<div><p>The design and preparation of quantum states free from environmental decohering effects is critically important for the development of on-chip quantum systems with robustness. One promising strategy is to harness quantum state superposition to construct decoherence-free subspace (DFS), which is termed dark state. Typically, the excitation of dark states relies on anti-phase-matching on two qubits and the inter-qubit distance is of wavelength scale, which limits the development of compact quantum chips. In the current work, a hybrid plasmonic quantum emitter was proposed, which was composed of strongly correlated quantum emitters intermediated by a plasmonic nanocavity. Through turning the plasmonic loss from drawback into advantage, the anti-phase-matching rule was broken by rapidly decaying the superposed bright state and preparing a sub-100 nm dark state with decay rate reduced by 3 orders of magnitudes. More interestingly, the dark state could be optically switched to a single-photon emitter with enhanced brightness through photon-blockade, with the quantum second order correlation function at zero delay showing a wide range of tunability down to 0.02.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"2 3","pages":"Article 100060"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472323000230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The design and preparation of quantum states free from environmental decohering effects is critically important for the development of on-chip quantum systems with robustness. One promising strategy is to harness quantum state superposition to construct decoherence-free subspace (DFS), which is termed dark state. Typically, the excitation of dark states relies on anti-phase-matching on two qubits and the inter-qubit distance is of wavelength scale, which limits the development of compact quantum chips. In the current work, a hybrid plasmonic quantum emitter was proposed, which was composed of strongly correlated quantum emitters intermediated by a plasmonic nanocavity. Through turning the plasmonic loss from drawback into advantage, the anti-phase-matching rule was broken by rapidly decaying the superposed bright state and preparing a sub-100 nm dark state with decay rate reduced by 3 orders of magnitudes. More interestingly, the dark state could be optically switched to a single-photon emitter with enhanced brightness through photon-blockade, with the quantum second order correlation function at zero delay showing a wide range of tunability down to 0.02.