Flux-charge analysis and experimental verification of a parallel Memristor–Capacitor circuit

M.A. Carrasco-Aguilar, F.E. Morales-López, C. Sánchez-López, Rocio Ochoa-Montiel
{"title":"Flux-charge analysis and experimental verification of a parallel Memristor–Capacitor circuit","authors":"M.A. Carrasco-Aguilar,&nbsp;F.E. Morales-López,&nbsp;C. Sánchez-López,&nbsp;Rocio Ochoa-Montiel","doi":"10.1016/j.memori.2023.100043","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, the flux-charge analysis method is applied to obtain the theoretical response of the voltage generated in a parallel Memristor–Capacitor (M–C) circuit excited by an input pulse generator with a 100 kHz frequency, 5 V amplitude and a 50 ohms output impedance. The theoretical solution of the nonlinear ordinary differential equation that results when applying the method is reached by a numerical method. As a memristive circuit, a previously reported floating memristor emulator was used. The response obtained is compared with the experimental response, generating evidence that the applied analysis method yields an acceptable margin of error with regards to the experimental results obtained, contrasting with other similar reports, where the analyzes are based on theoretical memristive models, and show simulation results only. Summary, the paper would contribute to the analysis and experimental verification of the parallel M–C circuit subjected to a real switched exciting source, using a memristance equation established in an emulator that is different from the equations commonly used in the literature.</p></div>","PeriodicalId":100915,"journal":{"name":"Memories - Materials, Devices, Circuits and Systems","volume":"4 ","pages":"Article 100043"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memories - Materials, Devices, Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773064623000208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this article, the flux-charge analysis method is applied to obtain the theoretical response of the voltage generated in a parallel Memristor–Capacitor (M–C) circuit excited by an input pulse generator with a 100 kHz frequency, 5 V amplitude and a 50 ohms output impedance. The theoretical solution of the nonlinear ordinary differential equation that results when applying the method is reached by a numerical method. As a memristive circuit, a previously reported floating memristor emulator was used. The response obtained is compared with the experimental response, generating evidence that the applied analysis method yields an acceptable margin of error with regards to the experimental results obtained, contrasting with other similar reports, where the analyzes are based on theoretical memristive models, and show simulation results only. Summary, the paper would contribute to the analysis and experimental verification of the parallel M–C circuit subjected to a real switched exciting source, using a memristance equation established in an emulator that is different from the equations commonly used in the literature.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
并联忆阻器-电容器电路的通量电荷分析与实验验证
在本文中,应用通量电荷分析方法来获得由频率为100 kHz、振幅为5 V、输出阻抗为50欧姆的输入脉冲发生器激励的并联忆阻器-电容器(M–C)电路中产生的电压的理论响应。应用该方法得到的非线性常微分方程的理论解是通过数值方法得到的。作为忆阻电路,使用了先前报道的浮动忆阻器模拟器。将所获得的响应与实验响应进行比较,从而证明所应用的分析方法相对于所获得的实验结果产生了可接受的误差范围,与其他类似报告形成对比,在其他类似报告中,分析基于理论忆阻模型,仅显示模拟结果。总之,本文将使用模拟器中建立的与文献中常用的方程不同的忆阻方程,对实际开关激励源下的并联M–C电路进行分析和实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of an analog topology for a multi-layer neuronal network A graphene-based toxic detection approach Optimization of deep learning algorithms for large digital data processing using evolutionary neural networks The application of organic materials used in IC advanced packaging:A review Design and evaluation of clock-gating-based approximate multiplier for error-tolerant applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1