A survey on processing-in-memory techniques: Advances and challenges

Kazi Asifuzzaman, Narasinga Rao Miniskar, Aaron R. Young, Frank Liu, Jeffrey S. Vetter
{"title":"A survey on processing-in-memory techniques: Advances and challenges","authors":"Kazi Asifuzzaman,&nbsp;Narasinga Rao Miniskar,&nbsp;Aaron R. Young,&nbsp;Frank Liu,&nbsp;Jeffrey S. Vetter","doi":"10.1016/j.memori.2022.100022","DOIUrl":null,"url":null,"abstract":"<div><p>Processing-in-memory (PIM) techniques have gained much attention from computer architecture researchers, and significant research effort has been invested in exploring and developing such techniques. Increasing the research activity dedicated to improving PIM techniques will hopefully help deliver PIM’s promise to solve or significantly reduce memory access bottleneck problems for memory-intensive applications. We also believe it is imperative to track the advances made in PIM research to identify open challenges and enable the research community to make informed decisions and adjust future research directions. In this survey, we analyze recent studies that explored PIM techniques, summarize the advances made, compare recent PIM architectures, and identify target application domains and suitable memory technologies. We also discuss proposals that address unresolved issues of PIM designs (e.g., address translation/mapping of operands, workload analysis to identify application segments that can be accelerated with PIM, OS/runtime support, and coherency issues that must be resolved to incorporate PIM). We believe this work can serve as a useful reference for researchers exploring PIM techniques.</p></div>","PeriodicalId":100915,"journal":{"name":"Memories - Materials, Devices, Circuits and Systems","volume":"4 ","pages":"Article 100022"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memories - Materials, Devices, Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773064622000160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Processing-in-memory (PIM) techniques have gained much attention from computer architecture researchers, and significant research effort has been invested in exploring and developing such techniques. Increasing the research activity dedicated to improving PIM techniques will hopefully help deliver PIM’s promise to solve or significantly reduce memory access bottleneck problems for memory-intensive applications. We also believe it is imperative to track the advances made in PIM research to identify open challenges and enable the research community to make informed decisions and adjust future research directions. In this survey, we analyze recent studies that explored PIM techniques, summarize the advances made, compare recent PIM architectures, and identify target application domains and suitable memory technologies. We also discuss proposals that address unresolved issues of PIM designs (e.g., address translation/mapping of operands, workload analysis to identify application segments that can be accelerated with PIM, OS/runtime support, and coherency issues that must be resolved to incorporate PIM). We believe this work can serve as a useful reference for researchers exploring PIM techniques.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
记忆加工技术研究进展与挑战
内存处理(PIM)技术已经引起了计算机体系结构研究人员的广泛关注,并且在探索和开发这些技术方面投入了大量的研究工作。增加致力于改进PIM技术的研究活动,有望有助于实现PIM的承诺,解决或显著减少内存密集型应用程序的内存访问瓶颈问题。我们还认为,必须跟踪PIM研究的进展,以确定悬而未决的挑战,并使研究界能够做出明智的决定和调整未来的研究方向。在这项调查中,我们分析了最近探索PIM技术的研究,总结了所取得的进展,比较了最近的PIM架构,并确定了目标应用领域和合适的内存技术。我们还讨论了解决PIM设计中未解决问题的建议(例如,解决操作数的翻译/映射、确定可通过PIM加速的应用程序段的工作负载分析、操作系统/运行时支持,以及必须解决以纳入PIM的一致性问题)。我们相信这项工作可以为研究PIM技术的研究人员提供有用的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of an analog topology for a multi-layer neuronal network A graphene-based toxic detection approach Optimization of deep learning algorithms for large digital data processing using evolutionary neural networks The application of organic materials used in IC advanced packaging:A review Design and evaluation of clock-gating-based approximate multiplier for error-tolerant applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1