PRAP-PIM: A weight pattern reusing aware pruning method for ReRAM-based PIM DNN accelerators

IF 3.2 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS High-Confidence Computing Pub Date : 2023-06-01 DOI:10.1016/j.hcc.2023.100123
Zhaoyan Shen , Jinhao Wu , Xikun Jiang , Yuhao Zhang , Lei Ju , Zhiping Jia
{"title":"PRAP-PIM: A weight pattern reusing aware pruning method for ReRAM-based PIM DNN accelerators","authors":"Zhaoyan Shen ,&nbsp;Jinhao Wu ,&nbsp;Xikun Jiang ,&nbsp;Yuhao Zhang ,&nbsp;Lei Ju ,&nbsp;Zhiping Jia","doi":"10.1016/j.hcc.2023.100123","DOIUrl":null,"url":null,"abstract":"<div><p>Resistive Random-Access Memory (ReRAM) based Processing-in-Memory (PIM) frameworks are proposed to accelerate the working process of DNN models by eliminating the data movement between the computing and memory units. To further mitigate the space and energy consumption, DNN model weight sparsity and weight pattern repetition are exploited to optimize these ReRAM-based accelerators. However, most of these works only focus on one aspect of this software/hardware co-design framework and optimize them individually, which makes the design far from optimal. In this paper, we propose PRAP-PIM, which jointly exploits the weight sparsity and weight pattern repetition by using a weight pattern reusing aware pruning method. By relaxing the weight pattern reusing precondition, we propose a similarity-based weight pattern reusing method that can achieve a higher weight pattern reusing ratio. Experimental results show that PRAP-PIM achieves 1.64× performance improvement and 1.51× energy efficiency improvement in popular deep learning benchmarks, compared with the state-of-the-art ReRAM-based DNN accelerators.</p></div>","PeriodicalId":100605,"journal":{"name":"High-Confidence Computing","volume":"3 2","pages":"Article 100123"},"PeriodicalIF":3.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Confidence Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667295223000211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Resistive Random-Access Memory (ReRAM) based Processing-in-Memory (PIM) frameworks are proposed to accelerate the working process of DNN models by eliminating the data movement between the computing and memory units. To further mitigate the space and energy consumption, DNN model weight sparsity and weight pattern repetition are exploited to optimize these ReRAM-based accelerators. However, most of these works only focus on one aspect of this software/hardware co-design framework and optimize them individually, which makes the design far from optimal. In this paper, we propose PRAP-PIM, which jointly exploits the weight sparsity and weight pattern repetition by using a weight pattern reusing aware pruning method. By relaxing the weight pattern reusing precondition, we propose a similarity-based weight pattern reusing method that can achieve a higher weight pattern reusing ratio. Experimental results show that PRAP-PIM achieves 1.64× performance improvement and 1.51× energy efficiency improvement in popular deep learning benchmarks, compared with the state-of-the-art ReRAM-based DNN accelerators.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PRAP-PIM:一种用于基于ReRAM的PIM-DNN加速器的权重模式重用感知修剪方法
提出了基于电阻随机存取存储器(ReRAM)的存储器中处理(PIM)框架,通过消除计算单元和存储器单元之间的数据移动来加速DNN模型的工作过程。为了进一步减少空间和能量消耗,利用DNN模型的权重稀疏性和权重模式重复性来优化这些基于ReRAM的加速器。然而,这些工作大多只关注这种软硬件协同设计框架的一个方面,并对其进行单独的优化,这使得设计远非最佳。在本文中,我们提出了PRAP-PIM,它通过使用权重模式重用感知修剪方法来联合利用权重稀疏性和权重模式重复性。通过放宽权重模式重用的前提,提出了一种基于相似性的权重模式重用方法,可以获得更高的权重模式复用率。实验结果表明,与最先进的基于ReRAM的DNN加速器相比,PRAP-PIM在流行的深度学习基准中实现了1.64倍的性能提升和1.51倍的能效提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
期刊最新文献
Identity-based threshold (multi) signature with private accountability for privacy-preserving blockchain Navigating the Digital Twin Network landscape: A survey on architecture, applications, privacy and security Erratum to “An effective digital audio watermarking using a deep convolutional neural network with a search location optimization algorithm for improvement in Robustness and Imperceptibility” [High-Confid. Comput. 3 (2023) 100153] On Building Automation System security SoK: Decentralized Storage Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1